要审视自己。我们往往容易看到别人的缺点,却不容易看到自己的不足。“为什么看见你弟兄眼中的刺,却不想自己眼中有梁木呢?”说的就是这个道理。如果我们面对别人的过错,能够严格审视自己,就可以更加理性地看待问题。
那一年,我即将大学毕业,为了找个单位,天天出去“扫街”,但仍一无所获。我学的是建筑设计专业,找了几家建筑设计院,人家要的不是博士就是硕士。一负责人看着我的简历说,你读书时,还获过不少奖,不错!可是,我们这里暂时不缺建筑设计方面的人才,要不你先来我们这里干个保安什么的吧!等有机会再安排你。
刘标标睁了睁眼,又闭上了。妈妈又叫了几遍,还是没用,只能给睡梦中的儿子穿上衣服。刘标标忽然感觉身上很痒,终于忍不住彻底睁开了眼,大声说:“我不想起床!”“不想起也得起!”妈妈明显在嗓门上占据优势。
金华的亲戚送了我家一麻袋的橙子。橙甜,汁液淌嘴角。吃了橙,手也舍不得马上洗,用舌头舔一遍,把橙汁舔干净。村里没有人种橙。父亲说,这个橙好吃,下次来你带两棵橙苗来。
刘伟发了一个月脾气。母亲心疼儿子,就买了一辆旧单车,在一个夏曰的午后推回了家。刘伟骑上单车就跑,天天呼朋唤友,在集镇上闲逛。只有在外面没处混的时候,他才会回家,迎接他的自然是父亲铜铃般的眼珠子。刘伟把他爹当空气,吃完饭,跨上单车又风一样飘走了。
年轻时,朱伯是研究所里做什么都要精益求精的工程师。 后来,他开了间“玩具诊所”,专门修补上了年头的玩具:毛绒娃娃、火车侠、奥特曼……成为玩具修复师以来,朱伯早上8点起床,有时忙到晚上12点,至今已修复了数千个玩具。他喜欢叫玩具患者为“小朋友”,每个“小朋友”都有一个故事。
支教的最后一天,为了给我送行,孩子们早早来到学校画黑板画、贴气球、布置教室。他们的欢笑声像高原洁净的空气一般清新怡人,节目是孩子们提前好几天排练的,每表演完一个,我都拼命鼓掌。
乐乐:欢欢,我发现这里的马路名是我国的某些省份名或城市名,比如南京路、北京路、西藏路、福建路,还有以我的故乡四川命名的呢!欢欢:(2)乐乐:我还想请教你,你的学校在静安区,这名字有来由吗?
那年我上小学三年级。寒假前到学校拿学期成绩单。回家时我和六七个没带书包的好友同行。刚领的成绩单拿在手上,已经被我们折得皱巴巴了。
爱因斯坦与上海有特殊的情缘,他曾在1922年两次到访上海,前一次他踏上堤岸就获悉自己得到诺贝尔物理奖的消息;后一次他在福州路工部局礼堂演讲“相对论”,这两次抵沪,他都入住在理查饭店,即今天外滩的浦江饭店。
他告诉我,他是一名高中生,但对学习没有一点兴趣,他的爱好是摄影。他每天都沉迷于摄影当中,学习成绩非常差。父母对他的“不务正业”极为不满,经常指责他。就在两个月前,他最心爱的老相机被愤怒的父亲摔碎了,他一气之下离家出走,和一群网上认识的志愿者来到了这里——梦想了好久的目的地。
小镇只有一所大学,不大,但哪个国家的学生都有。中国来的一共五名,巧了,全是女生,名付其实五朵金花。珍妮是她们的头儿。五朵金花同吃住同进出,像一家子出来的。其实本来就是一家子。
环节四 模拟演练 情感升华我将让同学们阅读课本22页的材料,并按照所提供的步骤,组织学生举办一次模拟听证会,将学生分为四个小组,分别扮演教育局工作人员、人大代表、学生家长、学校校长的角色。待学生们模拟听证会结束后,我将采访学生,让他们谈谈参加完听证会后的感受,从而利用角色感悟总结落实民主决策的重大意义。这样,学生们在模拟演练中,感悟公民要通过各种渠道参与民主决策,是推进决策科学化、民主化的重要环节。为学生将来参与政治生活积累经验,增强了学生的主人翁意识和社会责任感。环节五 课堂小结 课后延伸我将用多媒体展示本节课的知识框架,并注重引导学生将今天所学新知识与前面知识联系起来,帮助学生从宏观上把握各知识点之间的关系,有利于学生理解记忆。另外,适当的课堂练习能检验学生掌握知识的情况,因此,课堂小结后我将让学生做一些典型的练习,加深学生对本课知识的理解,同时为为下一课的学习做准备。
这次专题培训,就是进一步提高认识,打牢思想基础,学好学通政策规定,杜绝人为失误。待会儿,XXX同时将结合两项法规,就领导干部个人有关事项报告查核结果处理案例专题讲解。组织部要带头学深学透、精通政策,切实发挥好指导、服务、帮助作用。全体处级干部要认真领会,要原原本本、逐字逐句认真研读两项法规精神和《领导干部个人有关事项报告表》各项内容,确保报告内容全面、真实、准确,符合规定要求。
1、知识技能目标:掌握一次函数的定义及其解析式的特点、知道一次函数与正比例函数关系、会利用一次函数解决简单的数学问题。2、过程与方法目标: 通过实际问题引出一次函数概念,发展学生探究能力、在教学过程中,让学生学会由具体到抽象,从特殊到一般的数学思想。 3、情感态度与价值观目标: 通过“登山问题”的研究,体会建立函数模型的思想、通过本节课的学习,向学生渗透数学来源于实践生活又反过来作用于实践生活的观念。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。