二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
【教学目标】知识与技能:了解我国不同等级城市的划分,并理论联系实际辨别现实社会的城市等级运用有关原理,说明不同等级城市服务范围的差异。了解城市服务范围与地理位置的关系。掌握不同等级城市的分布特点了解称城市六边形理论,并能用其解释荷兰圩田居民点设置问题过程与方法:通过对枣强镇及上海城市等级演化分布的学习,掌握不同等级城市城市服务范围与功能以及城市等级提高的基本条件通过对德国城市分布案例的学习,总结归纳出不同等级城市分布规律通过城市六边形理论的学习,学会分析城市居民点布局等现实问题情感态度与价值观:通过学生对我国不同等级城市(经济、人口、交通、服务种类)等相关资料的搜集,让学生关心我国基本地理国情,增强热爱祖国的情感。养成求真、求实的科学态度,提高地理审美情趣。
国旗下的讲话:《人生观、价值观、世界观》大家好,我是来自高XX级9班的xx。很荣幸能够站在国旗下讲话。人们经常说三观,可到底是哪三观呢?其实这三观就是人生观,价值观和世界观。世界观是人对世界总体的看法,包括对自身在世界整体中的地位和作用的看法,价值观是社会成员用来评价行为、事物以及从各种可能的目标中选择自己合意目标的准则。而今天我想和大家说说我的人生观一个人的人生观决定着一个人做人的标准,把握着人生的方向、抉择着人生道路的选择,因此,我们可以说,一个人的人生观决定了他生命的意义。可能台下有的同学就会问,我们要怎样去把握好自己的人生,让一生仰不愧于天,俯不怍于地呢?很好,接下来我就来回答这个问题。我认为,要有正确的人生观,就要有乐观的心态。人生在世,不过三万五千天的事,况且能过活到这个数字的寥寥无几,所以我们能够支配的时间并不多,但我们可以以乐观的心态过好每一天。泰戈尔写过:“如果错过了太阳时你流泪了,那么你也要错过群星了”是啊,人这一生说长不长,说短也不短,难免会碰到不如意的事,使你寸步难行,举步维艰,但这仅仅是暂时的阴影,我们大可以在这阴影中沉论,但如果这样,你就忘了:当你面前满是阴影是,你却忽略了背后的整片阳光。所以,为什么不以乐观的心态笑对生命中的不如意呢?
校园内我们本着“处处是教育之地,人人是教育之师”的原则,把教育理念与科学文化知识融进校园的每一个角落,教师、学生齐动员,开垦楼后荒地。我们在开垦出来的土地上种花草,栽树木,一草一木的设置、一花一景的搭配,都使整个学校体现着浓厚的人文氛围,美好的环境不仅给学生以美的享受,更能于无声处发挥其规范学生言行,净化学生心灵的作用。在劳动之余使学生有了“学习如禾苗,懒惰如蒿草”的人生感悟。优美的校园环境对学生品德具有潜移默化、陶冶熏陶的作用。我们本着“有限空间,开拓无限创意”对教学楼墙壁进行着装,一层,名人名言警句。二层,师生书画作品。三层,获奖美术作品。四层,科技创意作品。让学生置身于文化氛围浓郁的教学楼中耳濡目染,感受传统文化与现代文化的对接,感受名人与伟人的人格魅力,感受传统工艺与现代科技完美结合。
五、教学反思:时钟的秒针、分针、时针扫的图形, 汽车挡风玻璃的刮水器;刷工人刷过的面积近似看为扇形。圆中的计算问题---弧长和扇形的面积,虽然新课标、新教材要求学习,但本节教师结合学生的实际要求,将其作为内容进行拓展与延伸,具有一定的实际意义。用生活中动态几何解释扇形,体验解决问题策略的多样性,发展实践能力与创新精神。本节课,教师通过“扇子”的问题情景引入新课,它蕴含了大量的情感信息,有效激发学生的求知欲望,充分调动学生的学习积极性,注重学生的参与,让出时间与空间由学生动手实践,鼓励学生自主探索、合作交流、展示成果,提高了学生发现问题、提出问题、解决问题的能力。用“扇子变化”,帮助学生探索自然界中事物的动静结合问题,利用“扇子的文化”的新奇感激起学生的学习热情,陶冶了学生的学习情操,从而使学生更深切地理解问题,使原本单调枯燥的数学变得生动、形象,激发学生的情感,使课堂充满生机。
尊敬的各位领导、老师们、亲爱的同学们:早上好!今天我讲话的题目是《做一个文明之人》。在这里先给大家讲两个事例:第一个事例:新加坡是个以英语为通用语言的国家,据说他们的公共场所的各种标语大多是用英语书写的。但其中的一些涉及文明礼貌的标语,如“不准随地吐痰”、“禁止吸烟”、“不准进入草坪”等却用中文书写。这是为什么呢?人家回答:因为有这些不文明行为的大数是中国大陆的游客。为此,到新加坡考察的一位中学校长语重心长地说:不文明行为也是国耻。第二个事例:据中央电视台报道,国庆节后的天安门广场,随处可见口香糖残迹,显得格外刺眼,40万平方米的天安门广场上竟有xx万块口香糖残渣,有的地方不到一平方米的地面上竟有9块口香糖污渍,密密麻麻的斑痕与天安门广场的神圣和庄严形成了强烈的反差。
这篇《国旗下的讲话稿:做一个文明之人》,是特地,希望对大家有所帮助!尊敬的各位领导、老师们、亲爱的同学们:早上好!今天我讲话的题目是《做一个文明之人》。在这里先给大家讲两个事例:个事例:新加坡是个以英语为通用语言的国家,据说他们的公共场所的各种标语大多是用英语书写的。但其中的一些涉及文明礼貌的标语,如“不准随地吐痰”、“禁止吸烟”、“不准进入草坪”等却用中文书写。这是为什么呢?人家回答:因为有这些不文明行为的大数是中国大陆的游客。为此,到新加坡考察的一位中学校长语重心长地说:不文明行为也是国耻。第二个事例:据中央电视台报道,国庆节后的天安门广场,随处可见口香糖残迹,显得格外刺眼,40万平方米的天安门广场上竟有60万块口香糖残渣,有的地方不到一平方米的地面上竟有9块口香糖污渍,密密麻麻的斑痕与天安门广场的神圣和庄严形成了强烈的反差。
首先,非常高兴、也非常欢迎各位家长来校参加今天的活动。你们含辛茹苦、倾注心血、倾其所有地养育孩子。我知道,此刻,作为父母,你们的内心会有诸多的感慨,酸甜苦辣挥不去,百般滋味上心头,但更多的一定是满满的骄傲、甜甜的幸福和殷殷的期许!XX中学感谢全体家长三年来对学校工作的信任、理解和支持。因为有你们,我们的学生才得以无忧成长、走向优秀;因为有你们,XX中学才得以不断发展、品质提升。我提议,让我们用热烈的掌声向家长朋友们表示诚挚的欢迎和衷心的感谢!
我是华南指挥部__项目部的资料员兼出纳,我叫__,想必大家对我既熟悉又陌生,熟悉的是名字,陌生的是人。我是一个进公司刚满一年的员工,在过去的一年里深得领导的信任和厚爱,有幸被评为优秀员工,并在年终作为资料代表在此发言,向领导们进行工作总结汇报。自进入谦诚后任职的第一个项目是江西向莆铁路,于20**年2月9日到向莆项目任职,在向莆工地开始接触软基处理的资料整理和小票打印,在项目部边做边学至5月份完工。又于6月份调任南广铁路__项目部任职,自在公司从事资料员兼出纳工作以来,我便对资料有了一种全新的认识,我认为,我们的资料员工作是非常重要的工程环节之一,是一个与现场施工同步的`重要环节,而且也是个需要灵活、耐心、细致的工作。那么我们在实际工作中应该按照什么程序才能做到最好呢?我总结了几点:
我们的园丁“敬业+专业”,“优秀的人”才能培养“更优秀的人”,广大教育工作者默默无闻、敬业奉献、专业精湛,这是我区教育界无形的宝贵财富;我们的体系“均衡+优质”,高考成绩的背后,是优质均衡的体系支撑,体现为办学的集团化、主体的特色化、竞争的良性化;
一、要更加自觉传承优良传统,永葆X教育的“春泥芬芳”X教育之所以持久芬芳,得益于教风、体系和环境“三大优势”,这是X教育赖以生长的肥沃土壤。我们的园丁“敬业+专业”,“优秀的人”才能培养“更优秀的人”,广大教育工作者默默无闻、敬业奉献、专业精湛,这是我区教育界无形的宝贵财富;
能正确、流利、有感情地朗读课文,背诵课文,并学习生字,积累词语。???????????????(2)过程与方法目标:借助多媒体课件等资源,创设情境,引领学生自主探究,互动交流,在读中理解,读中感悟。? (3)情感态度与价值观目标:体会红军大无畏的英雄气概和革命乐观主义精神。? ?三、说教学重难点:? 1.抓住重点诗句品读感悟,体会红军大无畏的英雄气概和革命乐观主义精神。?2.理解本诗高度的艺术概括性和极度夸张的手法。?四、说教法这首诗的时代背景是红军长征时期,离学生的生活年代比较远,学生要把握诗中的思想感情有一定的难度。根据学生实际情况和课文特点,我主要采用“情境教学法”和“朗读体会法”,即通过反复朗读,让学生读出诗的韵味,在读中理解诗意,在读中感受毛主席及其领导的中国工农红军大无畏的革命精神和英勇豪迈的气概,达到熟读成诵的效果。另外,利用创设情境法,将学生带入特定的历史背景中,让学生合作学习、小组交流,为学生营造了一个和谐的课堂氛围。
大家早上好!今天我讲话的题目是《珍爱生命,快乐成长》。同学们,据资料显示:我国每年大约有万名中小学生非正常死亡,中小学生因安全事故、食物中毒、溺水、自杀等死亡的,平均每天有40多人,也就是说每天将有一个班的学生在“消失”。还有40万至50万左右的孩子受到中毒、触电、他杀等意外伤害。而交通事故更是一个沉重的话题,据统计,从第一辆汽车问世至今,已有4000万条生命丧于车轮下,全国每6分钟因车祸死亡1人,平均每天死亡近300人,相当于每天掉下一架巨型客机。随着社会的发展,交通事故死伤的人数已居世界各种公害之首,人们把交通事故视为“永不休止的战争”和“柏油路上的战争”,另据中国青少年研究中心的全国性大型调查发现,安全事故已经成为14岁以下少年儿童的第一死因。同学们,七彩的阳光着实让我们感受到世界的美丽,但现实生活中总还有不和谐的音符在跳动。在我们的学生当中同样也存在一些不和谐的现象,因此想借今天的机会使同学们在思想上有所触动,在认识上有所提高,在行动上有所改进。
活动目标: 1、培养幼儿热爱祖国、热爱家乡的情感,珍惜每一份资源,做到不浪费,养成良好的环境意识。 2、培养其口头表述能力,通过听故事,能独立的完整的将大意概述出来。 3、了解纸的由来,学会利用纸,包括废物利用和循环利用。 活动准备: 各种各样的纸、剪刀等,造纸故事,造纸图、蔡伦图、颜料、桶。 活动过程: 一.谜语导入:引出“纸”。 “有个用具它不简单,可以写字,还可以把数算。 订起来是一本书,拆开来是一张张, 它是谁,我们都来猜猜看。”
2、提高左右手动作的灵活性、协调性。 【活动准备】 画有水果轮廓的涂画纸若干、苹果剪纸若干、玉米粒,自制各种喂小动物玩具、积木、自制小手镯每人一副(黄、蓝两色) 【活动过程】一、教师边念《小小手》儿歌边做动作,导入活动。 小朋友,现在我给大家念个儿歌听好吗?“拍拍手、拉拉手,我们都有一双手,穿衣服、扣纽扣,洗脸、刷牙和梳头,画画也要用小手,小小手、小小手,真是我的好朋友。”瞧!我的小手真能干,你们的小手会做些什么事情呢?幼儿互相讨论交流并讲述小手能做什么事情。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。