二、节目纷呈,时光宝贵我们朗诵诗歌《时间》。 节目一:朗诵诗歌《时间》 乙:不经意间,时间正一分一秒地从我们身边流逝。 甲:时间是不等人的。 乙:想挤出时间不容易,但失去时间却很容易。 乙:无论迎着多少无奈,无论听着多少感慨,它从不因势而变,因人而异。 甲:凡是在事业上取得成功的人,没有一个不是珍惜时间的典范。 乙:现在请收集关于“珍惜时间”故事的同学为我们讲述一下他们所收集的故事。 节目二:故事1讲述“爱迪生的故事”过渡:故事中爱迪生常对助手说的话就是:“浪费,最大的浪费莫过于浪费时间了,人生太短暂,要多想办法,用极少的时间办更多的事情。”一天,爱迪生在实验室里工作,他递给助手一个没上灯口的空玻璃灯泡,说:“你量量灯泡的容量”他又低头工作了。
【活动主题】迎难而上 【活动目的】1.使学生了解迎难而上,培养坚强意志。2.在学习和实践中充分发挥自己的主观能动作用,百折不挠克服学习上的各种困难,以顽强的意志提升自我,实现既定目标,达到成功的彼岸。 【活动准备】1.准备一个不管是顺境还是逆境,都不放弃自己的追求,生命不息、奋斗不止、坚韧不拨的故事。2.准备不同意志力的学生对学习影响的情境。【活动过程】一、班主任引题每个人的一生不都是一帆风顺的,都会有这样或那样的烦恼,而这些烦心事就是我们通常所说的困难。今天我们就围绕“困难”这个话题开一次班会。二、正视困难1.面对困难的两种态度甲:人的一生难免会遇到这样或那样的烦恼和挫折,“万事如意”“心想事成”只不过是人们的美好祝愿而已。
一、放《找朋友》音乐开场,主持人讲开场白。同学们,我们全班同学在一起生活学习几年了,有些成为了好朋友,有些却没说过几句话,你受同学欢迎吗?你会和同学交往吗?通过今天的活动,相信大家会对这些问题有一定的了解。二、进行“相互采访”活动。1.全班同学围成圆圈坐,两人一组,互相自我介绍,内容包括:(1)自己的姓名、年龄、家庭情况等;(2)自己的兴趣、爱好、特长、个性特点等;(3)其他有关的情况。2.访问活动结束后,每个同学介绍被他访问的同学,再由被介绍者补充。教师告诉其他同学要注意听,记住班上每个同学的特征,然后进行认人比赛。3.把同学分成两组,然后要求每组同学一一上台说出对方相邻者的采访情况,答对得分,写在记分牌上,得分高的一组获胜,得分低的一组唱一首歌。三、带着你的朋友来聊一聊。请一些同学邀请自己在班上的好朋友上台,说说为什么能成为好朋友,或朋友之间一些难忘的事,并接受大家的祝福。(大约3-4对朋友)
活动目的: 围绕活动主题,对学生进行民族传统文化及感恩教育,让学生了解传统节日中所蕴含的文化内涵,通过了解中国传统节日,帮助学生增强科学节日文化理念,弘扬创新节日文化。 活动准备: 1.学生在课外通过书籍和电脑搜集与主题相关的知识,老师精心制作班会课多媒体课件。 2.利用多媒体展示中国传统节日的文化习俗。 3.教师指导学生编排与传统节日有关歌曲、舞蹈。 活动过程: 一、成语接龙道祝福 主持人发言:曾有人说过,不会分享的人注定是一个孤独者,一个失败者。其实分享却很简单,它只是一种思想上的放松。每个人都把自己所拥有的给予别人,从而获取快乐,丢掉忧愁,这就是分享。 同学们抢答表达春节祝福的成语,比一比谁说的最多。 ①八的腊祭或腊月二十三的祭灶(扫尘),一直到正月十五,其中以除夕和正月初一为高潮。
三、开展过程:1、以猜谜语方式引入主题——手机"你讨厌,你讨厌,天天亲我嘴和脸,你无耻,你无赖,天天拉我裤腰带,你无情,你无意,只会花我的血汗钱。(猜一物品)”随着时间的改变,手机的发展越发迅速,手机的使用愈发智能化和方便化,很多人只知道手机的"面",不了解手机的真正的内在,根据ppt让同学们更加认识到手机的历史,手机的时代变化性。2.讨论环节。了解了手机的历史性后,告诉同学们,在唯物主义中,任何事物都有两面性,让学生结合自己的生活实例列举出手机的利与弊。通过资料总结,让同学们充分了解手机的利与弊,尤其让同学们了解手机的几大弊端,告诉同学们如何正确的使用手机,对于手机的利与弊有一个全面的认识。
在数学上,0这个数是解决记数和进位问题而引进的概念,由于它不能表示实在的东西,很长时间人们不把它看作是一个数。认为0是无,是对有的否定。从唯物辩证法的观点看,这种否定不是形而上学的简单否定,而是具有丰富内容的辨证否定。辨证的否定是发展的环节。0是从无到有的必经之路,是连接无和有的桥梁。0又是正数和负数之间的界限,它既否定了任何正数,也否定了任何负数,是唯一的中性数。但它又是联结正数和负数的中间环节。没有0,负数就过渡不到正数去,正数也休想发展到负数来。数学中的0是对任何定量的否定。如果没有这一否定,任何量的发展都无从谈起。这个否定不是一笔勾销,而是扬弃。因为它克服了任何定量的有限性,成为其发展的环节。在现实生活中,0作为辨证的否定,也体现出联系和发展的性质。如0度不是没有温度,而是非常确定的温度。
2.欣赏图案的装饰性,能对作品做出自己的评价。1. 迁移欣赏的经验,对创作陶塑作品感兴趣。重点难点:1.引导幼儿欣赏古代陶塑作品,感受作品的实用与美观。2.能创作陶塑作品。活动准备:已有经验:欣赏感知过各种造型的瓶子。材料准备:图片、投影仪。
每天总会有一两个小朋友从家里带玩具到幼儿园来,只要玩具一拿出来,全班的孩子都会很好奇地围上去,这种现象屡禁不止。与其禁止孩子们不要带玩具来幼儿园,不如让他们痛痛快快地来一起玩玩具好了,这是个孩子们都非常感兴趣的题材,我想我可以带着全班的小朋友来一次愉快的玩具国的旅行。于是,主题探索活动――玩具总动员就开始了。二、主题背景:儿童心理学家说:“玩就是儿童的工作。”那么玩具就是孩子“人生第一部教科书。”玩具是幼儿认识世界的一个重要途径,幼儿对事物、对人的认识就是在玩玩具的过程中逐渐形成的。
活动内容: 回忆交流自己乘坐各种交通工具时的感受。活动准备:1.有过乘坐交通工具的经验。2.幼儿在各种交通工具前合影的照片.3.交通工具模型。活动过程:1. 展示交通工具的模型。2. 请幼儿说出名称,和幼儿讨论这些交通工具是在陆上、海上还是空中使用,并说明其功能特征。3.请幼儿观察并讨论这些交通工具的异同。4.你见过这些交通工具吗?在哪看见过的?5.你坐过哪些交通工具吗?坐在里面看到了什么,感觉怎样? (1)请幼儿个别介绍。 (2)请幼儿相互交流。
二、学情分析: 学生们对《品德与生活》的兴趣浓厚,他们喜欢和同伴进行交流,喜欢游戏活动,喜欢在活动中展示自己。三、指导策略:1、以活动贯穿全课。2、让学生在游戏活动中体验和感悟。3、将交警请到课堂,实现课堂的开放性。4、在交流合作中实现活动的有效互动。
2、在抢答的活动中,区分绿色食品和垃圾食品的种类。 3、乐意吃一些比较有营养的绿色食品,并参与绿色食品游戏赛。活动准备 1、一些和饮食卫生有关的图片若干。 2、幼儿用书人手一册,红色彩笔人手一支。活动过程1、幼儿进行谈话活动: 1)教师:你喜欢吃什么食品?为什么? 2)教师将幼儿说的各类食品一一贴在黑板上或快速地画在黑板上,并进行分类。 2、通过观察幼儿用书,了解注意饮食卫生的重要。 1)看图说说:图上的小朋友在做什么?想一想这样做对吗?为什么?
为幼儿提供各种材料,为幼儿的创造提供了更为宽泛的创造空间,孩子们通过动手、动脑,对创造产生了浓厚的兴趣。并给孩子一个自由、安全、宽松的环境,使孩子们能在这样的环境中“发现”和“探索”。利用情境式的动画效果,更使幼儿充满尝试和描绘的愿望。活动目标:初步引导幼儿学用各种材料和间隔的方法在圆圈内装饰。尝试用自己喜欢的材料、颜色和图案,大胆想象为小动物的汽车装配上美丽的轮胎。活动准备:废旧光盘、瓦楞纸、铅化纸、蜡光纸、回形针、橡皮泥、瓜子粒、油画棒、水彩笔若干等。范例:画好的车辆、三只轮胎、花鸭先生及汽车图片。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。