注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)设计意图:通过观察图片和回顾以前的知识,使学生由感性认识上升到理性认识。通过描述平行四边形的特点和定义,也培养了学生的语言表达能力。同时也渗透了一些由实际问题转化为数学问题的“转化”的数学思想。(三)、引导实验探索新知【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.动手操作并思考:让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
接着,引导学生回答命题1的题设、结论,教师把命题1的图示画在黑板上,得到以下的数学表达式。已知:如图,△ABC∽△A/B/C/、△ABC与△A/B/C/的相似比是K,AD、A/D/是对应高。求证:AD/A/D/=K首先让学生回忆,证明线段成比例学过哪些方法,接着引导学生分析证明思路:要证AD/A/D/=K,根据图形学生能找到含对应高和对应边的两对三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要证AD/A/D/=K,则应有△ADB∽△A/D/B/,由条件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。随后,学生口述教师板书规范的证明过程。接着问学生还有哪些证明方法?同理可证得其他两边上的对应高的比等于相似比,所以命题1具有一般性。而对于命题2、命题3的数学表达式和证明方法与命题1类似,所以为了提高教学效率,用投影依次将命题2、命题3的已知、求证和题图显示出来,并指导学生课堂练习证明这两个命题。
2、发展幼儿思维的准确性、灵活性,激发幼儿参与数学活动的兴趣。 活动准备 1、连线纸、水彩笔人手一份 2、鸡蛋、鸭蛋、鹅蛋、鸟蛋图片若干 3、摆放成封闭式的平面鸡蛋、鸭蛋、鹅蛋、鸟蛋若干张 4、数字卡片 活动过程 一、引起幼儿兴趣、交代主题,活动导入。 1、游戏《连线找客人》 “今天我们这里来了四位神秘的客人,把卡片上的点子按数字从小到大的连起来,你就可以知道了。” 2、幼儿连线,教师将幼儿作品贴在黑板上。 今天来的客人是谁?(一起说一说) 小动物们说:小朋友,你们知道谁是我的妈妈吗?请你们帮帮忙,把我们的妈妈找出来吧! 出示相应的动物妈妈图片。
设计意图:最后是当堂训练,目标检测,这一环节要尽量让学生独立完成,使训练高效,在学生训练时教师要巡回辅导,重点关注课堂表现不太突出的学生,由于本课时内容多,训练贯穿课堂始终,加上不能使用计算器,因此课堂节奏难于加快,所以当堂训练的时间预估不足。四、教学思考1.教材是素材,本节课对教材进行了全新的处理和大胆的取舍,力求创设符合学生实际的问题情境,让学生经历从实际问题中抽象出锐角三角函数模型的过程,发展了学生的应用意识及分析问题解决问题的能力,培养了学生的数学建模能力及转化的思维方法。2.充分相信学生并为学生提供展示自己的机会,课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及小组交流、演板等形式,帮助学生形成积极主动的求知态度。
本次活动让幼儿统计生日、居住楼层、家庭人口等,在上次活动中孩子们已收集了每个幼儿的基本情况并做记录,但有些孩子很快便发现这些原始资料多而杂不便记忆和记录,我紧紧抓住这一契机把问题抛给孩子,引导幼儿通过统计解决这一问题。在统计的过程中幼儿运用图画、文字、数字等符号进行记录,通过孩子们间的协商、分工、合作完成统计。由于原始资料较多加之我班幼儿对统计接触不多,故此活动将是对孩子合作能力的挑战同时也是孩子体验成功的过程。 在今天的活动中幼儿可能有争论、有矛盾,更有不足的地方,但站在孩子的发展角度,我更多的注重活动过程,注重孩子们交往能力、分工合作能力和解决问题的能力是否得到了真正提高,这才是我密切关注的问题。目的要求:1、通过统计伙伴的生日、居住楼层、家庭人口等,初步建立统计的概念2、积极寻找解决问题的方法 3、体验合作与成功的快乐。
二、活动目标:1、认识5以内的序数,学习序数词“第几”。2、能从不同的方向找到物体排列的位置。3、发展观察能力、判断能力,提高动手操作能力。三、活动准备:1、有5层高的楼房背景图一幅,幼儿熟悉的小动物5个,如小狗、小猫、小兔、小猪、小猴等。2、幼儿每人一份操作材料:5只不同的小动物,有5节车厢的火车或有5棵小树的图片等。
2、初步体验数字在生活中的作用以及与人们生活的关系。 活动准备:收集马路边的数字照片、PPT、录像 活动过程:一、说一说(交流照片,引发幼儿对马路边数字的兴趣)出示幼儿收集的照片1、幼儿互相交流2、集体讨论3、小结
三、准备: 1、幼儿人手一张记录卡; 家里的数字: 2、课件制作:我的家 课件一:家里的各种物品(鞋、桌子、椅子、茶杯、玩具、电视机等物品)。 4 6 5 3 2 1 课件二:厨房、客厅、卧室。 三、过程: 观看录像一)、认识数字,理解6以内各数字的实际意义: 1、幼儿交流记录卡,说说在家中发现了哪些数字? A、直观的数字(数序):如、电话上的数字、钟上的数字、电器上的数字;
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
五、分析文章结构以上分析的是3——11自然段,是本文的主体部分,下面我们来看看其他段落写什么。一问:首先我有一个问题,本文是写故都的秋,但也写到了江南之秋,主要在哪些段落?其作用是什么?明确:主要在2和13自然段,目的是以江南之秋来衬托故都的秋。二问:那么作者是抓住江南秋天什么特点来衬托故都的秋的?在结构安排上,为何要一前一后?明确:分别抓住其“看不饱,尝不透,赏玩不到十足”和“色彩不浓,回味不永”的特点,前者在第2自然段,后者在第13自然段,这样在结构上就形成了前后呼应。三问:好,从这篇文章结构来看,2和13自然段相呼应,假如1、14自然段也相呼应,那这篇文章的结构就更加严谨了,试问这两段是否有呼应?明确:第1段写作者对故都秋的感受和向往,第14段写作者对故都秋的眷恋之情,都是抒发情感,“向往”是在去故都之前,“眷恋”是在离开故都之时,其实质是一样的。所以1和14自然段也构成了呼应。
1.作者简介卡尔·萨根(CarlSagan,1934—1996),美国人,曾任美国康奈尔大学行星研究中心主任,被称为“大众天文学家”和“公众科学家”。他以对科学的热忱和个人巨大的影响力,引导几代年轻人走上探索科学之路。他对人类将无人航天器发送到太空起过重要的作用,在行星科学、生命的起源、外星智能的探索方面也有诸多成就。他主持过电视科学节目,出版了大量科普文章和书籍,其《伊甸园的飞龙》曾获得普里策奖,电视系列节目《宇宙》在全世界取得热烈反响。主要作品还有《宇宙联结》《宇宙》《布卢卡的脑》《被遗忘前辈的阴影》《暗淡蓝点》《数以十亿计的星球》等。2.解说词的文体特点课文是一部电视片的解说词,具有以下几个特点:(1)解说词要根据解说对象的特点,有明确的主题和说明重点,不能面面俱到,要突出事物的主要方面,抓住事物的关键,即使是拓展性内容,也不能游离解说的主题。如课文解说的对象是宇宙,那么就要紧扣宇宙的组成来介绍,不能随意生发其他问题。
2、培养幼儿的观察能力。准备:背景图一张,贴绒教具:小鸭子6个,数字卡:“1——6”若干,一袋糖果,玩具熊一个。学具:糖果与盘子,数字卡“1——5”每人一套,操作卡每人一套。活动过程:在音乐的伴奏下,老师抱着小熊开着汽车进课室。师:(出示小熊)小朋友们下午好,小熊听说我们班的小朋友可听话了,而且还特别的聪明能干,于是,小熊特意开着汽车给小朋友送来了一袋好东西,你们想不想知道小熊带的是什么东西呢? 请一位小朋友来摸摸,不要出声,让他悄悄告诉下一个小朋友,依次类推,最后,请最后一个小朋友来告诉大家。
【活动目标】1.初步理解年、月、日的概念,感知年、月、日之间的关系;了解一年又12个月,一个月有30(31)天,一年共有365天。2.引导幼儿知道日历等是记录或查看时间(日期)的工具;学习查看的他们的方法。3.培养幼儿的观察和想象力,发展幼儿的交往能力。【活动准备】1.大字卡(年、月、日)各一张;自制外形状房子装的2009年1月——12月的月历(大月、小月、2月的数房子大小有区分);小字卡和数字(12、30、31、28、365)人手一份。2.各类挂历、台历、月历等布置的展区。【活动流程】1.幼儿观察十二座“房子”,引起兴趣。 (1)说一说,你发现了什么? (2)那几座房子大,哪几座房子小,最小的是哪一座房子?2.出示数字卡(12、30、31、28、365),猜猜与“房子”有什么联系,明确探索的任务。
在解决问题的过程中,学生使用到了生活中常见的工具——标杆、镜子等,这些小工具摇身一变就成了学生学习用的学具。使学生感觉到利用身边的工具完全可以达到解决问题的目的。八、本节得失本节课意在更好地让学生在实际操作中掌握相似三角形的判定与性质。这节课我感觉成功之处在于:1、立足于问题情境的创设。在课堂教学中创设良好的学习情境,充分激发学生求学热情。当学生的学习投入到教师创设的学习情境中,就会形成主动寻求知识的内在动力。学生在这种学习情境中主动学习到知识,比讲授给他们的要丰富得多,而且更能激发他们的学习兴趣。2、注意培养学生的问题意识。问题解决后,教师应让学生从解决的问题出发,通过对题目的拓展,引导学生用新的思维去再次解决新问题,这样不仅让学生掌握了更多的知识,还能让学生的思维得到升华。3、培养学生自主探索、合作交流的学习方法和习惯。
(三)解释、应用和发展问题4:如果测量一座小山的高度,小山脚下还有一条河,怎么办? (教师巡视课堂,友情帮助 ,让学生参照书本99页,用测角仪测量塔高的方法.这个物体的底部不能到达。)(1)请你设计一个测量小山高度的方法:要求写出测量步骤和必须的测量数据(用字母表示),并画出测量平面图形;(2)用你测量的数据(用字母表示),写出计算小山高度的方法。过程: (1) 学生观察、思考、建模、自行解决(3) 学生间讨论交流后,教师展示部分学生的解答过程(重点关注:1.学生能否发现解决问题的途径;学生在引导下,能否借助方程或方程组来解决问题;学生的自学能力.2.关注学生克服困难的勇气和坚强的意志力。3.继续关注学生中出现的典型错误。)(设计意图: 让学生进一步熟悉如何将实际问题转化成数学模型,并能用解直角三角形的知识解决简单的实际问题,发展学生的应用意识和应用能力。
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。