提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版高中历史必修2第二次工业革命说课稿2篇

  • 学校2023-2024学年第二学期教学工作总结

    学校2023-2024学年第二学期教学工作总结

    同时各功能室建立规范的使用记录、活动记录、损坏维修、报损等记录,实验室有实验教学计划、实验进度安排及分组(演示)实验通知单,分组实验报告单,图书室有借阅和阅览记录等原始记录。8.规范学籍管理严格按上级文件要求进行学籍管理,特别是省外学生的转入转出,规范学籍转入、转出、休学、复学等工作。另外,学校作为XX教育集团领头羊,还成功承办了多项区级、教育集团活动,成绩显著。二、待提升的工作1.校本课程因各类特殊原因,本学期校本课程尚未开足开齐,部分外聘教师的课程教学效果有待提高,下学期将提前谋划,精准落实。2.教师发展年轻教师教科研的积极性不高,有待挖掘。如少数年轻教师在参加智慧课堂教学比赛校级遴选时,态度消极,准备不足。三、下一步工作方向进一步完善学校教科研制度,激发教师参与教育科研的积极性;同时探索常态教学检查规范化、制度化,量化检查结果。

  • 某校2023——2024学年第二学期教学工作总结

    某校2023——2024学年第二学期教学工作总结

    开学初,为充分发挥各功能室的作用,音乐、美术、科学、物理、化学教研组拟定各功能室的使用安排,教务处不定期抽查功能室使用情况。同时各功能室建立规范的使用记录、活动记录、损坏维修、报损等记录,实验室有实验教学计划、实验进度安排及分组(演示)实验通知单,分组实验报告单,图书室有借阅和阅览记录等原始记录。8.规范学籍管理严格按上级文件要求进行学籍管理,特别是省外学生的转入转出,规范学籍转入、转出、休学、复学等工作。另外,学校作为XX教育集团领头羊,还成功承办了多项区级、教育集团活动,成绩显著。二、待提升的工作1.校本课程因各类特殊原因,本学期校本课程尚未开足开齐,部分外聘教师的课程教学效果有待提高,下学期将提前谋划,精准落实。

  • 北师大初中数学八年级上册二次根式的运算1教案

    北师大初中数学八年级上册二次根式的运算1教案

    1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.

  • 北师大初中数学八年级上册认识二元一次方程组1教案

    北师大初中数学八年级上册认识二元一次方程组1教案

    小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x张,2元的贺卡为y张,可列方程组为x+y=8,x+2y=10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.

  • 北师大初中数学八年级上册应用二元一次方程组——鸡兔同笼1教案

    北师大初中数学八年级上册应用二元一次方程组——鸡兔同笼1教案

    解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

  • 北师大初中数学九年级上册一元二次方程的解及其估算1教案

    北师大初中数学九年级上册一元二次方程的解及其估算1教案

    方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.

  • 北师大初中数学九年级上册一元二次方程1教案

    北师大初中数学九年级上册一元二次方程1教案

    解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(19-2x)cm,宽为(15-2x)cm.根据题意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.三、板书设计一元二次方程概念:只含有一个未知数x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c为常数,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c为常   数,a≠0),其中ax2,bx,c   分别称为二次项、一次项和   常数项,a,b分别称为二次   项系数和一次项系数本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.

  • 北师大初中数学九年级上册一元二次方程的根与系数的关系1教案

    北师大初中数学九年级上册一元二次方程的根与系数的关系1教案

    方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.

  • 北师大初中数学九年级上册用公式法求解一元二次方程1教案

    北师大初中数学九年级上册用公式法求解一元二次方程1教案

    ∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.

  • 北师大初中数学九年级上册一元二次方程的解及其估算1教案

    北师大初中数学九年级上册一元二次方程的解及其估算1教案

    首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.

  • 北师大初中数学八年级上册二次根式及其化简1教案

    北师大初中数学八年级上册二次根式及其化简1教案

    方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.

  • 北师大初中数学九年级上册用公式法求解一元二次方程1教案

    北师大初中数学九年级上册用公式法求解一元二次方程1教案

    易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.

  • 北师大初中九年级数学下册确定二次函数的表达式1教案

    北师大初中九年级数学下册确定二次函数的表达式1教案

    解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.

  • 高二年级全体教师会讲话稿

    高二年级全体教师会讲话稿

    1. 优生人数少,成绩不优优生人数少是我们年级的历史问题,但这不能成为20**年高考成绩不如人意的借口,因为老百姓不了解。高考不出好成绩,就难以让滦平人民满意,我们没有挡箭牌没有护身符,只有因地制宜,攻坚克难,提升优生比例,真正实现低进高出,优进杰出的办学追求!2. 个别教师消极抱怨情绪时有显现每个组织都有积极性高、任劳任怨的人,也有倦怠抱怨混日子的人,后一种人出现的原因,是思想定位问题:要么过分寻求绝对公平,稍有不平衡就会满腹牢骚;要么心浮气躁,希望工作立竿见影,努力一段时间没效果,就会垂头丧气。对公平,我们要心态平和,绝对公平是不实际的,相对公平是一定的;对成绩,我们要以坚韧的毅力提升业务能力,竹子四年长3厘米是在扎根,量变积累够了才能发生质变。

  • 高效课堂教学培训个人心得体会八篇

    高效课堂教学培训个人心得体会八篇

    一是教师讲得多,学生学得少。  学生是课堂教学的主体,这是提教师们经常用说到的课改理念,但在实际的教学中确并没有有效贯彻,许多教师在上课时还是“满堂灌”,一讲到底。要发挥学生的主体作用,就必须让学生参与到学习中来自主的学习,就必须保证学生有学习思考的时间和空间,可这种方式课堂基本被教师霸占,学和理被动的接受,要本就不能主动的学习。洋思中学的实践证明,课本上的知识有百分之八十是学生通过自学能学会的,根本就不需要教师多讲,并对课堂教学作出了规定,一节课教师纯讲时间不超过10分钟。我校也曾要求教师不能满堂讲,把讲授时间控制在25分钟,提倡引导学生自主学习,但效果不明显。要发挥学生学习的主体作用,就必须从引导学生预习、鼓励课堂展示、保证当堂训练时间和进行课堂检测这几个环节上多下功夫。在课堂要做到“三讲三不讲”,“三讲”即:讲核心的问题,讲学生思路和方法,讲知识缺陷和易混易错知识,“三不讲”即:学生会了的不讲,学生能自学会的不讲,讲了学生也不会的不讲。

  • 北师大初中数学八年级上册用二元一次方程组确定一次函数表达式1教案

    北师大初中数学八年级上册用二元一次方程组确定一次函数表达式1教案

    故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.

  • 二元一次方程组教案教学设计

    二元一次方程组教案教学设计

    1、问题1的设计基于学生已有的一元一次方程的知识,学生独立思考问题,同学会考虑到题中涉及到等量关系,从中抽象出一元一次方程模型;同学可能想不到用方程的方法解决,可以由组长带领进行讨论探究.2、问题2的设计为了引出二元一次方程,但由于同学的知识有限,可能有个别同学会设两个未知数,列出二元一次方程;如果没有生列二元一次方程,教师可引导学生分析题目中有两个未知量,我们可设两个未知数列方程,再次从中抽象出方程模型.根据方程特点让生给方程起名,提高学生学习兴趣.3、定义的归纳,先请同学们观察所列的方程,找出它们的共同点,并用自己的语言描述,组内交流看法;如果学生概括的不完善,请其他同学补充. 交流完善给出定义,教师规范定义.

  • 2024年上半年工作总结及下半年工作谋划汇编(2篇)

    2024年上半年工作总结及下半年工作谋划汇编(2篇)

    (四)认真抓好林业灾害防控工作。一是保持森林防火平稳态势。出动宣传车辆300余次,发放森林防火、有害生物防治等宣传资料7000余份,AAA和抖音宣传森林防火投放60余万次,防火码APP应用率100%。开展野外火源治理及林区输配电设施火灾隐患排查8次,制止违规用火40余起,排查火灾隐患18处,均已整改,二是林业有害生物防治安全可控。开展5·12林草生物灾害防控宣传周活动。投入450万元开展美国白蛾飞机防治工作,共计作业面积40万亩,至6月6日,全部顺利完成。(五)壮大林业产业发展成果。一是抓住产业重点。重点发展林下种养殖和森林康养,目前已完成林下种植面积XX万亩,产值XX亿元;林下养殖面积XX万亩,产值XX亿元;森林景观利用5万亩,产值XX亿元。申报第九批省林业产业化龙头企业8家。

  • 第六周国旗下讲话稿:做好准备、迎接第一次月考

    第六周国旗下讲话稿:做好准备、迎接第一次月考

    尊敬的老师、亲爱的同学们:大家早上好!今天,我在国旗下演讲的题目是“做好准备、迎接第一次月考”。在这飘散着青草芳香的阳春三月。高三的学长、学姐们,为了心中的高考目标,又一次蓄势待发、做足了一切准备,准备迎接第二次模考。高二、高一的同学们在经历了一个月,新鲜、紧张的学习后,为了证明优秀的自己,检验走班制学习的效果,也要面对新学期的第一次月考了。良好的开端是成功的一半。如何才能做好准备,在考试中展现自己的实力呢?第一、合理安排时间、注重学习效率。只有课堂上跟上老师的节奏,认真听讲。课后才能有充足的时间去复习消化。有的同学把熬夜当成了家常便饭,不仅影响了身心健康,而且第二天上课时变成了“睡仙”、一睡不醒。这种事倍功半的学习方法、效率肯定不会高。

  • 人教部编版语文九年级上册任务三尝试创作(2)教案

    人教部编版语文九年级上册任务三尝试创作(2)教案

    我认为这首诗,一共三节,每节句数、字数相当,结构工整,符合建筑美的特点,同时也使诗歌具有了节奏感;另外这首诗音韵和谐,朗朗上口。我认为这首诗相同句式回环往复,给人留下深刻印象。我认为此诗语言犹如清水出芙蓉,清丽淡雅,营造了唯美纯净的世界。…………师:节奏把握这一技巧相对比较简单,大家的创作和点评都很有水准,很好。希望大家在以后课余的诗歌创作中能兼顾到我们现在所谈的技巧。【设计意图】讲诗歌的创作技巧,既要讲出最关键的技巧,也要结合实例,让讲解深入浅出,让学生在理解的同时加以训练,使学生能够加深对知识点的理解。三、课内演练,巩固技法 学习本节课的技法之后,请大家写一首诗或一个诗歌片段,要求运用本节课所讲的诗歌写作技巧。(学生思考创作并展示)

上一页123...228229230231232233234235236237238239下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。