一、引入 主持人:感谢父母,他们给予你生命,抚养你成人;感谢老师,他们教给你知识,引领你做“大写的人”;感谢朋友,他们让你感受到世界的温暖;感谢对手,他们令你不断进取、努力;感谢太阳,它让你获得温暖;感谢江河,它让你拥有清水;感谢大地,它让你有生存空间。感恩,是一种心态,一种品质,一种艺术。感恩是礼貌。有人帮助了我们,我们随口说声“谢谢”,可能会给对方心里带来一股暖流。有人为我们付出了许多,我们感谢他,他可能会更加多的帮我们。怀着感恩的心,是有礼貌,是知恩图报。所以,感恩,是一种有礼貌的品质。感恩是画笔。学会感恩,生活将变得无比精彩。感恩描绘着生活,将生活中大块的写意,挥洒得酣畅淋漓;将生活中清淡的山水,点缀得清秀飘逸;将生活中细致的工笔,描绘得细腻精美。所以,感恩,是一种多样的艺术。下面我宣布“让我们都有一颗感恩的心”主题班会现在开始!
一、组织目的:1.在形成新集体时,同学之间难以融合,唯我独尊的现象严重,且同学之间还存在互不服气,相互排斥的不友好现象。针对此现象,按照校政教处的要求,组织以“我和我的集体”为中心的主题班会——《我们携手走向明天》,旨在增强集体凝聚力,唤起学生对集体的热爱、对同学的友爱之情。2.力争通过此次班会,调动尽可能多的同学参与到建设一个积极向上、团结协作的集体中来。并在班会中发现同学们的特长,增进彼此的了解,促进友谊的发展。 二、准备步骤:1.召开班委会,讲明以上目的。调动班委的积极性,出谋划策,着手准备。 2.主要负责人班长、宣委构思班会内容,注意从本班现实中搜集素材。3.找班内有号召力的同学谈心,激发其参与活动的热情,并引导其在某些方面作表态。4.审查班长、宣委的组织稿件。5.审查有关人员的发言稿, 引导其从积极、正面的角度调动同学们爱集体、尊重他人的热情。
二、教学背景如今的孩子很多都是独生子女,一家人围着,疼都疼不过来,在一些孩子的心中认为父母等对自己的关心、养育都是理所当然的,大多“以自我为中心”,忘记对父母的付出说一声:“谢谢”。孩子对父母的养育变的冷漠,在家任性、霸道。人需要有一颗感恩的心,互相理解,世界才会充满爱。针对当前孩子存在这方面问题,需要加强对学生进行亲情教育。三、教学目标1、通过这次活动启迪学生去体会父母对自己的付出,更重要的是引导学生学会做人做事。2、联系实际,理解学会感恩能从多方面利于青少年成长,形成良好的道德品质。3、学会有一颗感恩的心,对于别人对自己的付出,懂得体会,感谢,学会与他人交往,为他们将来走向社会打下基础。四、教学重点1、唤起学生的感恩情感2、做一些可及的感恩行为,学会理解父母,树立健康心理
“正好啊,老树根是最适合坐下来休息的。来啊!孩子,坐下,快坐下来休息一下。”男孩坐了下来。树好快乐。她高兴得留下了流下了泪水……(故事结束后,课件出示父母辛苦劳作的图片,出示一组家庭生活图片,学生思考感悟。)请学生谈由图片和歌曲获得的感受和体会:“你想到了什么”?学生自由发言。甲:这就是我们的父母,他们无怨无悔,不求回报,真是可怜“天下父母心”啊!播放歌曲《天下父母心》:然而在日常生活中,我们总会与父母发生分歧甚至冲突顶撞,还常常埋怨父母的啰嗦。我们的母亲因为儿子的顽皮而无奈的哭泣;我们的父亲因为女儿的懒惰而叹气;请看小品:《丁丁在家里》(由部分学生和家长代表合演,主要凸显月休孩子在家不听父母教导,过于沉迷网络游戏,不写作业,不能按时作息而家长无可奈何的现象)。
⑦使用手机会妨碍学校的教育教学秩序。上课时有的同学手机未关机,突然来电话,影响全体同学听课。会给整个教室带来不愉快的情绪。⑧手机对人有辐射。许多广告只说手机有多少多少先进功能,却从未提对人体伤害。对人体是否造成不利的影响,医学界可谓众说纷纭,最近权威医学杂志《柳叶刀》的手机报告显示,使用手机造成记忆力受损、睡眠紊乱、头痛、癞痫及血压上升的现象,而儿童,青少年受影响的可能更大。大部分国家通用的手机系统GSM频率为900和1800MHz,其振动的电子过程有机会对人体健康造成影响,主要是对脑部及精神状态的影响. 而且手机振动所散发出的电磁波可能会导致青少年大脑的神经出现病变。青少年正处在生长发育的黄金阶段,如果因为手机而对身体伤害,岂不追悔莫及。
B、郑智化坐在轮椅上演唱自己作词作曲的歌《水手》。[多媒体播放郑智化唱《水手》一歌画面和音乐]①郑智化一上场为什么马上会赢得掌声?《水手》这首歌反映了郑智化怎样的思想境界?(引导学生谈郑智化的人生经历)由于郑智化的努力,“风雨中这点痛算什么”,经过思考斗争,使得悲观消极的情绪转化为奋斗有为、争取上进的积极情绪和心态。3、举出名人对待挫折的事例。(学生事先搜集,这里讲述梗概)司马迁在屈辱中完成了《史记》 屈原在流放期间写出《离骚》 曹雪芹在穷困潦倒中写出巨著《红楼梦》吴敬梓在贫困的寒夜写出了《儒林外史》……4、学生结合录相和故事,谈谈应该怎样正视挫折。[多媒体显示:怎样正视挫折]①要明白挫折是任何人都避免不了的,具有普遍、客观性。面对挫折时,要通过坚强的意志战胜自己的消沉和软弱,通过自己的努力,最终坚定地走向成功。[多媒体显示:挫折不可避免,通过坚强意志战胜]
学生欣赏。教师补充讲解。谈谈你有什么感受。同学们,你们勤劳的双手除了做自己的事以外,还为别人做过事吗?师:同学们,你们的小手可真能干 ,会做这么多事情,我们来夸夸自己吧。(学生(齐):嘿嘿,我很棒!)师:我们不但自己的事情自己做,而且还能够别人的事情帮着做。我们的双手会干这么多事情,我真为你们感到高兴。那你们想一想,要是遇到我们不会干的事情,我们又该怎么做呢?学生交流。师:我们不会干的事情一定要学着去做。5、欣赏歌曲《我有一双勤劳的手》6、倡议正如歌曲里的“我有一双勤劳的手,样样事情都会做”下面,周老师提出7条倡议。师:全体起立,请我们班的全体同学从今天开始都能做到:(出示)跟老师一起读。
教学目的:让学生尽快进行自我调整,明确奋斗目标,进入最佳的学习状态。教学内容:重温规章制度,拟定新学期打算。教学时间:一课时教学过程:一、常规教育1、重温《小学生守则》和《小学生日常行为规范》,并在日常学习的过程中让学生知道什么行为是对的,什么是不对的,使学生养成良好的学习和生活习惯。2、作息时间的安排:早上清洁时间、早读时间、午自习时间、放学时间、作业时间,并严格按照科学的作息时间(强调必须遵守)。3、集体活动:要遵守学校的规章制度。4、早读:书本教材、按学习进度读书、背诵。5、课前准备:按课程表准备下节课的学习用品、相关书籍齐全。6、上课听讲:坐姿端正、积极思考、发言大胆、不影响他人学习。7、下课活动:注意安全、团结友爱互帮互助、上下楼梯不拥挤,课间不得在过道、走廊上追逐打闹、高声喧哗,不玩危险游戏,不疯赶打闹,不爬栏杆、云梯,做有意义的课间活动。
三.活动过程: 引言:达.芬奇曾经说过:劳动一日可得一天的安眠,劳动一世可得幸福的长眠。 的确,只有亲自参加劳动的人,才能尊重劳动人民,才会懂得珍惜别人的劳动成果,才会懂得幸福的生活要靠劳动来创造。劳动是我们中华民族的传统美德。我们二十一世纪的中学生就更应该热爱公益劳动,珍惜劳动成果。那么,我们应该怎样热爱公益劳动,珍惜劳动成果呢?“五一”是国际劳动节,那让我们为这个全世界劳动人民的节日唱出劳动的赞歌吧。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口数不等,只有按2:3:6的比例摊派才较合理,则三个村庄各派多少个劳动力?2:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?目的:检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.实际活动效果:从学生做题的情况看,大部分学生都能正确地列出方程,但其中一部分人并不能有意识地用“列表格”法来分析问题,因此,教师仍需引导他们能学会用“列表格”这个工具,有利于以后遇上复杂问题能很灵活地得到解决.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1. 两个未知量,两个等量关系,如何列方程;2. 寻找中间量;3. 学会用表格分析数量间的关系.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。