用你的语言描述一下配方法解一元二次方程的基本步骤和需注意的问题。 教师引导学生进行反思、归纳配方法解一元二次方程的基本思路、步骤及注意事项。巩固对课堂知识的理解和掌握,同时进一步体会解一元二次方程时降次的基本策略和转化的思想。 六、布置作业分层布置作业,既巩固本节主要内容,又有让学有余力的学生有思考和提升的空间。思考题为后面深入研究配方法,完善对配方法的认识做准备。 同时让学生感受到数学学习在实际生活中的作用,感受数学的美。五、板书设计我将板书分成了两部分,重点突出这节课用配方法解一元二次方程的步骤,在配以适当的练习,简单明了,重点突出。六、教学评价与反思本节课我根据学生的特点采用合作交流探究式学西方法教学,让学生动起来,感受数学学习的乐趣。让学生更加爱学数学。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.2 区间教 学 目 标知识目标:1、理解区间的概念 2、掌握区间的表示方法 技能目标:1、能进行区间与不等式的互相转换 2、能在数轴上正确画出相应的区间 情感目标:体会不等式在日常生活中的应用,感受数学的有用性教学 重点 和 难点 重点: 不等式的概念和基本性质 难点: 1、会比较两个整式的大小 2、能根据应用题的表述,列出相应的表达式教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.1
说教法、学法:这一节课的数学是针对小班幼儿,他们的年龄小,爱动,爱玩儿,好奇心强,注意力容易分散,根据这一特点,为了抓住他们的兴趣,激发他们的好奇心;我采用了愉快的数学方法。以游戏的形式让幼儿在游戏中学习,充分发挥幼儿对学习的积极性。为了更好地突出有幼儿的主体地位,在整个数学过程中,通过幼儿数一数,说一说,做一做多种形式,让幼儿积极动眼,动脑,动手,引导幼儿通过自己的学习经验来学习新知。积极开展本节课的教学活动。课堂教学是幼儿数学知识的获得,技能,技巧的形成,智力能力的发展,因此我设计了以下3个环节:1.唱歌曲引起兴趣,在这个环节中说出1.2.3分别像什么,引发幼儿的好奇心,这样,幼儿对之就有了兴趣。2.观察:这个环节中我出示的图片让幼儿观察他们像什么,然后说出是几
1、设计意图:分类是根据物品的同和异,把物品集合成类的过程,也就是把相同的或具有共同特征的物品归并在一起。对小班幼儿来说分类包含两个层次。一个是求同,就是把相同的物品摆放在一起,比如西瓜和西瓜、糖果和糖果。第二个层次是分类,分类就是把有共同特征的物品放在一起。在本节课中就是在找到一模一样的礼物的基础上再把礼物分成可以吃的,可以玩的和书本三大类。求同是分类的基础,因为求同时的标准是现成的,而分类时要幼儿自己产生标准,他们会把西瓜和糖果都放到食物箱里。所以设计时先让幼儿进行求同活动,提高他们掌握标准的能力,循序渐进,再让幼儿进行分类活动。通过生动的游戏形式,让幼儿在动动、玩玩、做做的过程中,积累有关类的经验,提高幼儿对数学活动的兴趣。2、目标定位:1、让幼儿能找出相同的物品,并知道摆放在一起。2、练习将物品分类,并养成分类摆放物品的好习惯。3、让幼儿通过游戏体验相互合作、和同伴分享的快乐。
新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者。活动中应力求“形成合作式的师幼互动”,因此本活动我除了和幼儿一起准备丰富的活动材料,还挖掘此活动的活动价值,采用适宜的方法组织教学。活动中我运用了1、情景表演法:活动导入部分既要让幼儿发现问题,引出下面一系列的疑问及探索,又要通过幼儿感兴趣的方式设置悬念,因而我设计了小兔出门摔倒这一情节,并通过情景表演的方法启发幼儿思考。2、演示法:是教师通过讲解谈话把教具演示给孩子看,帮助他们获得一定的理解,本活动的演示是运用几何图形的基础上,学会区分异同。此外我还运用了观察法、谈话法等,对于这些方法的运用,我“变”以往教学的传统模式——教师说教,为以幼儿为主体,教师以启发、引导的方式,充分调动幼儿学习的积极性,并以“游戏”贯穿活动始终,让幼儿在玩中获得知识,习得经验,真正体现玩中学,学中乐。
经过“十”字步的学习知道东北秧歌的基本步伐。8、 演一演 让孩子们用舞蹈表现歌曲,拿起手帕扭秧歌、以及用打击乐器为歌曲进行伴奏,演示一遍,把全课推向高潮。七、教学启示总之,在本方案的设计中,我力求体现以人为本的思想,着眼于学生的主动发展,致力于运用现代信息技术优化课堂教学的研究,淡化学科边缘,通过充分的音乐实践培养学生的能力,提高音乐素养。依托音乐本身的魅力,影响学生人生观、审美观、价值观的形成。全面影响学生做人、做事的态度,培养学生主动学习、合作意识、探究精神。从目标的提出、到过程的安排、学习方法的确定、乃至学习成果的呈现,都让学生有更大的自主性、更多的实践性、更浓的创造性。当然,措施付诸实施,还需要老师的爱心和慧心,教学研究永无止境,我相信,没有最好,只有更好。在此,还请各位领导和同行们提出宝贵意见,谢谢!
第四环节:播放视频《三只小猪》。增加幼儿对故事的印象,并讨论:你们觉得故事中的小黑猪是怎么样一只小猪?(是一只勤劳、勇敢、聪明的小猪)如果你盖房子,会选择什么材料盖?建议幼儿盖结实的砖房子,要做一个不怕苦、不怕累的孩子。第五环节:表演《三只小猪》。选出扮演角色,分发头饰。运用多媒体课件布置故事背景,教师指导。最后教师再围绕活动重点和活动方法进行最后的归纳和总结。在归纳总结的基础上,我又设计了活动延伸:小朋友们真棒!今天都学会了讲这个故事。那晚上回家的时候就唱给爸爸妈妈听一听哦。请爸爸妈妈监督我们做一个勤劳、勇敢的孩子!各位老师:俗话说“教无定法,贵在得法”,能使一个活动取得成功,需要不断地尝试和探索,我会在以后的教学实践中,在新的教育理念的熏陶下,和孩子们一起探索,一起成长。望各位老师给予批评指正。
3、分组表演,进行评价,改进提高。说明:新课标中鼓励音乐创造,注重个性发展,教师应为学生提供发展个性的可能和空间。本节课安排了歌曲表演创作的环节,分三段,以小组的形式讨论,创设“小毛头”当时卖报的情景,表现“小毛头”的心情。这一环节的设计重在启发学生展开音乐想象,在课堂上大胆说、大胆想、大胆创造、大胆唱、大胆演,鼓励在音乐体验中的独立见解。这个环节还可以锻炼学生的动作协调能力。(五)教学评价生生互评,师生共评的评价过程,能使学生达到感受自我,正确评价自我的目的。教学预设:本节课的设计中,我依据学生的年龄特点,采用了多种教学方法。每个知识点的出现尽量做到自然流畅,难点教学中遵循由浅入深的原则。学生在教师的引导下,或聆听感受,或听辩体验。40分钟的快乐学习,一定会让全体同学都有所收获,那就是能完整准确的演唱歌曲,并且会用动作表现和歌曲情感来进行歌表演。
(2)拓展训练跳兔子舞结尾:用跳兔子舞的游戏分两组进行表演,后面的同学双手搭在前面同学的肩上做跳兔子舞的动作排成两组,站在已经设计好的图线上按照图线上的先后顺序前进:一组先边唱边跳前进,二组等一组唱了八拍后再开始前进。(用运多种形式来表现歌曲,是为了加深学生对二声部合唱的理解,进一步体会二声部合唱的魅力)六、结束教学总结:听着小朋友们美妙的歌声和精彩的表演,看着大家亲密无间的的合作,老师的心里无比开心!我想,小朋友们通过对本节课的学习,会更加爱护人类的好朋友-----动物,老虎是我们国家的一级保护动物,希望小朋友们从小提高保护动物,保护自然,珍爱生命的意识。
我采用故事导入的方法,以一段生动的猫和老虎的故事来吸引学生的学习兴趣,创设学习的情境,为学生营造求知的氛围,这样在轻松的氛围下,就激发了学生的学习兴趣。学唱歌曲先让学生完整地聆听歌曲,多次感受歌曲风趣的情趣,再听琴和小声哼唱歌曲的音调,然后鼓励学生自由的读歌词,有感情地读歌词。在通过小组的练唱小声随琴填唱歌词,分组讨论如何表现歌曲的情感,鼓励学生大胆的来唱,学生给予互评,教师给予指导,最终达到学生能完整地演唱这首歌曲。我放手让学生去自学,是因为:这首歌曲曲调诙谐,在学生的意识里很想唱好这首歌曲。鼓励学生大胆的尝试自主学习,带给他们的喜悦。男女生分唱,师生分唱,小组分唱。通过换方式演唱歌曲,不但能让学生进一步唱准歌曲,而且还能提高学生的学习兴趣。因为只有在唱准歌曲的基础上,才能演唱其它方式,这样就体现了“在玩中学,在学中乐”的实质。
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。