2、能专注地观察纸人的动作图谱,并在图谱的提示下合作表演木偶舞。3、体验师幼共同表演的愉悦。准备:1、小纸人若干2、条形KT板四块3、音乐光盘、VCD一架 过程一、随音乐带动跳进活动室师:小朋友们,你们喜欢舞蹈吗?那就跟音乐跳起来吧!师:在美妙的音乐声中,我们来到了纸人王国,纸人王国就要举行一场音乐舞会,,小纸人们正在发愁,不知道编什么动作好,我们那小朋友都很喜欢舞蹈,愿不愿意帮他们编舞蹈,设计好看的动作?(愿意)瞧!他们来了
2、在本次活动中,我以情景的方式导入:我做兔妈妈,孩子们做兔孩子。(妈妈和孩子的形式孩子在体育活动中一直开展这样的形式,孩子兴趣也很高。与孩子们一起练习小兔双脚并拢跳的技能。在第二环节的游戏中,我通过层层递进的方法:(1)天黑了,小兔回家,躲到三角形洞里。(2)大灰狼来了,要抓躲在三角形洞里的兔子(3)抓躲在红色方形洞里的小兔。三个游戏来达到层层递进的效果。既帮助幼儿对图形的巩固认识,有发展幼儿听指令游戏的能力。 活动名称:小兔找山洞活动目标:1、在小兔找山洞的游戏中,巩固认识各种图形。2、初步练习听指令进行游戏。活动准备:小兔、大灰狼头饰、地上画有各种图形、青草等
2、培养幼儿与同伴合作、交流的能力。活动准备:各类图形(圆形、三角形、长方形、正方形)、供幼儿操作的废旧物品、玩具汽车、美工区的材料、录音机、音乐磁带。活动指导:1、动手操作,投放有车轮和无车轮的玩具汽车,让幼儿自由选择一辆玩具汽车,玩一玩、开一开。2、谈话,请小朋友一起想一想、说一说。a.刚才你玩什么车?发现什么?b.有什么办法可以让车跑起来?3、幼儿自由探索。(1)老师为小朋友准备了许多材料,引导幼儿把各种形状的物品都试一试、滚一滚,找一找,找出适合当车轮的材料。(2)讨论:a.幼儿互相说说自己拿了什么物品当车轮。b.幼儿互相比一比谁的车轮跑得快,为什么?c.说说球能不能当车轮,为什么?3、教师小结:因为象球一样的车轮会到处滚动,不好掌握方向,而象滚筒一样的车轮只能向前后滚动,能更好的掌握方向。
2、发展幼儿的全身协调性和柔韧性。 3、培养幼儿之间友爱互助,克服困难的精神。活动准备: 1、尼龙绳结成的网3张、山洞3个、平衡木3条、小红旗3面、椅子若干、 2、磁带、录音机 3、布置好场地活动过程: (一)开始部分 幼儿随音乐“健康舞”跟老师一起做准备运动,老师自编动作。
2、 培养幼儿无畏、勇敢、果断、镇定的优秀品质。3、 增加幼儿对大自然的热爱。 活动准备:竹梯、彩色滚筒、椅子、牛筋等。 活动设计: 一:准备部分基本动作练习。立正——稍息——向右看齐——向右转——原地踏步走——齐步走——小跑——立停。二:基本部分 小特警已经学会了许多本领,今天要进行考试了——探险。在我们探险的路上,要过许多小桥。有有趣的小桥、也有很危险的小桥,大家可要注意了!看哪个小特警员特别勇敢、机智、聪明。
活动目标:l、通过游戏活动,发展幼儿走跑交替、跳跃及平衡的能力,体验游戏带来的乐趣。2、通过游戏活动,发展幼儿四肢的协调性、柔韧性和动作的灵敏性,提高幼儿听信号做相应动作的能力。3、培养幼儿的扩散性思维和协作能力。 活动准备:l、红、黄、蓝、绿色的塑料圈每人四个。2、红、黄、蓝、绿色的小旗各一面。3、大鼓一面,柱子两根。4、录音机、磁带。5、场地布置如图。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
大学开学国旗下学生讲话稿【一】 在这激-情似火的盛夏,伴着缕缕金色阳光,三秦学子们齐聚一堂,用自信谱写豪迈,用魅力抒发胸怀,更用智慧、理性、希望展现大学生的风采!站在这里,此时此刻,我心中依然在不断地鼓励自己。为什么?因为面对这次比赛,我一直深感压力与恐惧!我害怕失败,害怕失败后无法面对那一双双期待的眼神;但是,我告诉我自己,面对生活,我需要这样一种心态:直面逆境,不做生活的屈服者!说起逆境,我们大家的思维定势都会联想到一些大悲大苦的故事。故事中主人公的经历,总是常人无法想象和承受的。其实我们大家的生活并没有多少大坎坷,大痛苦;相反,我今天所要谈的逆境,就像前面我自己的例子一样,是我们大家生活中经常可以碰到的琐事与烦恼。举一举例子。有时,我们会因为与朋友的关系搞不好而发愁;有时,我们会因为感到社团领导交给自己的任务太难,而身感压力;还有时,我们会因为学业成绩的不满意,而哀声连连。诸如次类的琐事与烦恼才真正构成了我们生活中常见的逆境。面对它们,我们感到痛苦,我们感到忧愁。到底该如何去获得那一颗宁静与祥和的心?请随我一起回顾我曾经的一个故事。大二的时候,我满怀信心的要在学校举办一次“大学生成功心理学” 的演讲,但是,在筹办的过程中我却遇到了以下困难:首先,这次历时两天、每天四小时的演讲需要记忆的材料量很大,10张VCD,6本书,不仅要浓缩,还要有系统性、层次性以及趣味性;其次,我为了把宣传工作做好,需要完成近20张海报,6条横幅,50张多媒体幻灯片的制作;最后,就是那一颗恐惧演讲失败而惴惴不安、几欲放弃的心。当时, 面对这些困难,身处逆境的我,该当如何?!
写作背景这首诗写于普希金被沙皇流放的日子里,是以赠诗的形式写在他的邻居奥希泊娃的女儿叶甫勃拉克西亚·尼古拉耶夫娜·伏里夫纪念册上的。那里俄国革命正如火如荼,诗人却被迫与世隔绝。在这样的处境下,诗人却没有丧失希望与斗志,他热爱生活,执着地追求理想,相信光明必来,正义必胜。(三)、问题探究1、“假如生活欺骗了你”指的是什么?指在生活中因遭遇艰难困苦甚至不幸而身处逆境。作者写这首诗时正被流放,是自己真实生活的写照。2、诗人在诗中阐明了怎样的人生态度?请结合你感受最深的诗句说说你曾有过的体验。诗中阐明了这样一种积极乐观的人生态度:当生活欺骗了你时,不要悲伤,不要心急;在苦恼的时候要善于忍耐,一切都会过去,我们一定要永葆积极乐观的心态;生活中不可能没有痛苦与悲伤,欢乐不会永远被忧伤所掩盖,快乐的日子终会到来。
知识与技能1.了解大牧场放牧业和乳畜业两种农业地域类型及其分布。2.通过学习大牧场放牧业,学会分析农业区位因素,训练读图分析能力。3.掌握大牧场放牧业在经营方式、商品化、专业化、经济效益等方面的特点。4.解西欧乳畜业的形成因素。过程 与方法1.通过对潘帕斯草原大牧场放牧业区位因素的分析,学会归纳大牧场放牧业的区位条件。2.把西欧乳畜业和潘帕斯草原大牧场放牧业的区位条件作比较。情感态度与价值观1.自然条件是农业地域类型形成的条件,人类必须尊重自然规律,才能天人合一。2.人文条件也越来越大地影响到农业的区位选择,事物是发展的,不能用静止的观点看待问题。【教学重点】1.理解大牧场放牧业和乳畜业两类农业地域类型的区位因素。2.利用图表资料分析农业区位因素的能力。
一、设计思想通过本节教学,不但要使学生认识掌握匀变速直线运动的规律,而且要通过对这问题的研究,使学生了解和体会物理学研究问题的一个方法,图象、公式、以及处理实验数据的方法等。这一点可能对学生更为重要,要通过学习过程使学生有所体会。本节在内容的安排顺序上,既注意了科学系统,又注意学生的认识规律。讲解问题从实际出发,尽量用上一节的实验测量数据。运用图象这种数学工具,相对强调了图象的作用和要求。这是与以前教材不同的。在现代生产、生活中,图象的运用随处可见,无论学生将来从事何种工作,掌握最基本的应用图象的知识,都是必须的。学生在初学时往往将数学和物理分割开来,不习惯或不会将已学过的数学工具用于物理当中。在教学中应多在这方面引导学生。本节就是一个较好的机会,将图象及其物理意义联系起来。
【设计思路】新课程十分强调科学探究在科学课程中的作用,应该说科学探究是这次课程改革的核心。我觉得:科学探究不一定是要让学生纯粹地通过实验进行探究,应该说科学探究是一种科学精神,学生只要通过自己的探索和体验,变未知为已知,这样的教学活动也是科学探究。本节课是概念教学课,让学生纯粹地通过实验进行探究是不太合适的。但通过学生自己的探索和体验,变未知为已知还比较合适。本节课的设计就是基于这样的出发点,在引出加速度的概念时低台阶,步步深入,充分激活学生的思维,是学生思维上的探究。通过复习前边速度时间图像,从而得到从图像上得到加速度的方法,为加深加速度概念和相关知识的理解有配套了相应练习题目,做到强化练习的目的。【教学目标】知识与技能1.理解加速度的意义,知道加速度是表示速度变化快慢的物理量.知道它的定义、公式、符号和单位,能用公式a=△v/△t进行定量计算.2.知道加速度与速度的区别和联系,会根据加速度与速度的方向关系判断物体是加速运动还是减速运动.3.能从匀变速直线运动的v—t图象理解加速度的意义.
一、设计思想通过本节教学,不但要使学生认识掌握匀变速直线运动的规律,而且要通过对这问题的研究,使学生了解和体会物理学研究问题的一个方法,图象、公式、以及处理实验数据的方法等。这一点可能对学生更为重要,要通过学习过程使学生有所体会。本节在内容的安排顺序上,既注意了科学系统,又注意学生的认识规律。讲解问题从实际出发,尽量用上一节的实验测量数据。运用图象这种数学工具,相对强调了图象的作用和要求。这是与以前教材不同的。在现代生产、生活中,图象的运用随处可见,无论学生将来从事何种工作,掌握最基本的应用图象的知识,都是必须的。学生在初学时往往将数学和物理分割开来,不习惯或不会将已学过的数学工具用于物理当中。在教学中应多在这方面引导学生。本节就是一个较好的机会,将图象及其物理意义联系起来。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。