一、说教材(一) 教材内容分析1、地位作用本节内容在人教版小学数学一年级下册第二单元。本单元内容是在第一册集中教学20以内的进位加法的基础上,集中教学20以内的退位减法,“十几减9”是20以内退位减法教学的第一课时,第二课时是“十几减几”,它是在学生学习10以内加减法、20以内的进位加法的基础上进行的教学,它既是为学生学习退位减法铺路,也为学生学习四则计算奠定基础。2、教材分析20以内退位减法在本册尤为重要,对进一步学习多位数计算和其他数学知识非常重要,必须在理解算理的基础之上学会计算方法。在已学过的仅为加法和10以内的减法的基础上展开,巩固20以内的进位加法,进一步渗透加减法之间的互逆关系。让学生结合情境图解理解题意,进行计算等等,解决现实问题。引导学生从不同角度观察,通过操作后的讨论,用不同的思路思考,引出“想加算减”和“破十法”两种比较方便的计算方法。使学生在理解掌握“想加算减”的计算方法同时,还要理解“破十法”,并引导学生学会选择适合自己的计算方法,体现算法的多样化。
一、说教材1.教材分析《同级混合运算》是九年义务教育人教版二年级下册第五单元的教学内容。教材创设了“图书阅览室”问题情境,目的是为了让学生了解脱式运算,了解没有括号的算式里,只有加减法或只有乘除法,都要从左往右按顺序计算。使他们树立学习数学的信心,逐步提高他们的计算能力。 2.教学目标知识目标:借助解决问题的过程让学生明白“在同级的混合运算中,应从左往右依次计算”的道理。能力目标:在经历探索和交流的过程中,理解并掌握同级运算的运算顺序,能正确运用运算顺序进行计算,并能正确进行脱式计算的书写。情感目标:培养学生养成先看运算顺序,再进行计算的良好习惯,同时提高学生的计算能力。3.教学重难点教学重点:理解并掌握同级运算的运算顺序,并能正确地进行脱式计算。教学难点:能正确进行脱式计算,掌握脱式计算的书写格式。二、说教法根据新课程理念,学生已有的知识、生活经验,结合教材的特点,我采用了以下教法:1、情景教学法:新课开始,让学生通过图书馆这一情景,理解运算顺序。2、发现、讨论法:利用我们小组合作座位优势,让小组间讨论、说计算过程,从而掌握计算方法。三、说学法运用书本为载体,以观察、比较、小组讨论、推理和应用及口算为主线,目的是为了使学生对学习有兴趣和留给学生学习思考的空间。
(一)教学内容我说课的内容是人教版小学数学四年级第三单元第一小节“加法运算定律”中的第1课时的内容,其内容包括:第17页的例1以及18页的“做一做”第一题、第19页练习五第1~3题的部分习题。(二)教材地位数学中,研究数的运算,再给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。加法是数学中最基本的运算之一。通过本课时的学习,首先,可使学生对加法的认识从感性上升到理性。其次,用不完全归纳法概括出加法交换律的文字表述形式和字母形式,一方面提高知识的抽象概括程度,另一方面为以后正式讲用字母表示数打下初步基础。(三)教学目标1、通过学习,使学生理解和掌握加法交换律,并会运用加法交换律进行简便计算。2、让学生学会用符号或字母来表示加法交换律。3、培养学生抽象概括能力,引导学生由感性认识上升到一定的理性认识。
(一)情境导入以鲜明的色彩、生动的画面演绎激光从地球发送到月球的全过程,既引出了学过的线段,又激发学生探究新知的欲望。(二) 质疑探究在讲授新课的过程中,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。1、认识线段。通过多媒体演绎,使学生对于抽象的“线段”的认识建立在具体的生活模型基础上,有助于学生认识图形特征,形成表象,感受生活中处处有数学。这一环节主要引导学生回顾所学的线段知识,通过画图、说特征、举例子、讲授字母表示法这一系列活动,使学生进一步认识线段。2、 认识射线。多媒体课件形象、生动地演示了激光在宇宙中不断延长,再延长,通过直观感知,在头脑中建立“无限延长”的表象,帮助学生理解“无限延长”的含义。通过教师引导和小组合作,共同学习射线的画法、特征及字母表示法,进而把所学知识还原到生活当中,让学生明确数学与生活紧密联系。
(一)教学内容本节课是义务教育课程标准实验教科书人教版四年级下册第三单元的《乘法运算定律》第24、25页 例5、例6 中的内容。(二)教材分析 学生对乘法交换律在以前的学习中已有初步认识,在作业或者练习中已经接触过当一个乘法算式里的因数交换位置后,通过计算会发现它们的积并不变。这节课我们正式概括出任意的例子让学生观察、发现对任意两个整数相乘有同样的性质,从而总结出“乘法交换律”这个术语。对于乘法结合律这部分内容,教材是在学生已经掌握了乘法的意义,并且对乘法交换律有了初步认识的基础上进行教学的。 本节课力求突出以学生发展为本的教育思想,整个教学过程要求以学生为主体,尽量激励学生动口、动眼、动脑,积极探究问题,采用多种方法,通过学生的观察、比较、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性,促使学生积极主动的参与学习的全过程。(三)教学目标知识与技能:让学生理解和掌握乘法交换律、乘法结合律,并能运用运算定律进行简单的计算。方法与技巧:借助观察、比较、验证、归纳等方法,培养学生的分析、推理、总结能力。情感、态度、价值观:培养学生运用新知识解决实际问题的能力,培养学生的合作意识,提高主动解决问题的学习兴趣。
一.我对教材的理解(教材地位作用分析)——参考教学参考书《观察物体(二)》是物体的空间位置关系与形状的认识,是小数教学中的重要基础内容之一,也是小学生学习图形与几何数学知识需要掌握的基础知识和基本技能。本课内容是学生在学习了从不同角度(视角)观察物体位置与形状的基础上学习的。教材选取学生熟悉的空间环境和物体,通过从相同的角度(视角)位置观察、认识不同几何组合体形状的活动,认识、感悟从相同角度(视角)观察不同物体,看到的形状可能相同也可能不同,丰富、发展学生空间观念和观察、思考、判断能力,为进一步学习图形与几何知识铺路奠基。二.学情分析(根据考评要求,可不说)因为年龄特征决定了四年级学生活泼好奇好动,虽具一定的抽象思维能力,但仍然以形象思维为主;通过前面从不同方向角度观察认识简单物体的形状的学习,具一定的初步观察思考判断能力和左、右、前、后的二维空间观念,但却十分稚嫩;同时又存在个体差异,多数学生思维活跃,数学兴趣浓厚,表现欲望强烈,少数学生缺乏积极性,学习被动,基础较为薄弱;部分学生新知基础遗忘。
三、说学法学生是学习的主体,应在学习中充分发挥自己的主体能动作用,所以本节课学生主要采用以分组实践、自主探究、合作交流为主要形式的“探究学习法”,目的是通过丰富多彩的小组活动,观察实践,以合作学习促进自主探究。首先是小组合作观察药箱和其他立体图形的活动,我先让小组成员独立思考,然后组内讨论交流,达成共识,最后小组成员一齐操作。然后是小组议一议的活动,老师先引导学生:关于观察物体,你有什么新发现?学生在独立思考的基础上讨论交流,各抒己见,共同促进。组与组之间也有交流。学生合作过程中,教师适当的启发、引导,学生的学习方式主要是自主、合作和探究性的。
因此,我从学生已有的生活出发,寻找例子,帮助学生理解容积的概念。同时也多次提供了实践机会,让学生自己操作实验的过程,在操作中感知1升、1毫升的大小和容积单位和体积单位之间的关系。二、说教学目标1、理解容积的概念,认识常用的容积单位,感知1升和1毫升的实际大小,并掌握容积单位、体积单位间的进率。2、通过实验的方法,使学生经历探究容积单位、容积单位和体积单位之间的关系的过程。三、教学重难点:1、建立容积和容积单位概念,知道容积单位和体积单位的关系。2、会计算容积。四、说教法为了使课堂的主人能活跃起来,我用了自主探究式发现问题、谈论交流和实验教学的方法进行教学,从而也激发了学生的积极性和主动性。五、说学法:更多的是引导学生在自主尝试、观察、讨论和探究中获取知识。
一、说教材《用比例解决问题》是义务教育课程标准实验教科书六年级下册第四单元比例的第三节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
二、说教学目标知识和技能:能结合生活情景辨认锐角和钝角,能口述锐角和钝角的特征。 过程和方法:通过观察、操作、分类、比较等数学教学活动,培养学生的动手能力,合作意识,激发学生的创新思维。在对简单物体和图形的形状的探索过程中,发展空间观念。情感、态度、价值观:通过实践,使学生获得成功的体验,建立自信心。通过生活情境的创设,感受生活中处处有数学,培养学习数学的兴趣。教学重点:能辨认锐角、钝角。知道锐角、钝角的特征。教学难点:能辨认锐角、钝角。三、说教法、学法这一节课的教学对象是二年级的学生。他们年龄小、好动、爱玩、好奇心强,在四十分钟的教学中容易疲劳,注意力容易分散。根据这一特点,为了抓住他们的兴趣,激发他们的好奇心,我采用了愉快式教学方法为主,创设情境,设计了生动有趣的简笔画,让学生在图所创设的情境中学习。同时我还采用了动像发现教学法,让孩子们通过合作交流去发现角和展示角,这样既活跃了学生的思想,激发了认知兴趣,而且充分发挥学生的学习积极性。
“用计算器计算”是江苏国标版四年级上册数学第十一单元的教学内容这部分内容是在学生熟练掌握了整数的四则计算法则及两步混合运算的基础上进行教学。通过学习使学生可以借助计算器进行较大数目的四则运算并借助计算器来探索有关规律有利于帮助学生形成初步的探索和解决问题的能力。 本单元内容分两段安排,第一段先认识计算器了解计算器的基本功能和操作方法再学习用计算器进行四则计算的方法。第二段教学用计算器进行两步混合运算并安排了练习十。教材在“想想做做”和练习十中还编排了一些探索数学规律的趣题并通过“你知道吗”介绍“改错键”等常用的功能键以及有关计算工具发展的历史让学生了解计算工具的演变过程感受人类科技的进步与发展。最后教材还安排了实践活动《一亿有多大》帮助学生形成良好的数感。本单元分四课时完成今天我说的是第一课时。
一、说教材《笔算不进位乘法》是在学生学会表内乘法,整十、整百数乘一位数的口算、万以内加减法的基础上进行编排的教学内容。教材根据学生已有的基础,来引领学生推导出笔算的方法,并联系实际情景,使学生深刻的体会到多位数乘一位数在现实生活中的应用。同时,本节课也为学生继续学习《笔算进位乘法》提供了算理依据和算法模型。因此,本课时的内容在本单元中占据重要的地位。结合教材分析,我确立了以下的教学目标:教学目标:使学生学会乘法竖式的书写格式,理解笔算乘法的算理,掌握笔算乘法的计算方法。过程与方法中,让学生经历多位数乘一位数(不进位)的计算过程,体验计算方法的多样化。使学生在学习活动中获得成功,体验学习数学的乐趣。教学重、难点:使学生掌握多位数乘一位数的笔算方法及乘法竖式书写格式。理解多位数乘一位数的笔算算理。
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
一、教材的地位与作用 本节主要学习一元一次不等式组及其解集的概念,并要求学生会用数轴确定解集。它是一元一次不等式的后续学习,也是一种基本的数学模型,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。另外,整个学习的过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。二、学情分析从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化归能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,本节课的设计是通过学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
㈡教学目标⒈知识目标:①理解同类项的概念,并能辨别同类项;②掌握合并同类项的法则,并能熟练运用.⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力.⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育.
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。