二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
活动目标: 1、通过儿歌学习把毛巾打开,把脸上的部位都洗到的正确方法,把耳朵、脖子两个部位也洗到。2、提高幼儿自我服务意识和能力,愿意做力所能及的事。 活动准备:小兔、小象玩具、儿歌、自编故事 活动过程: 一、出示手偶,引起幼儿兴趣 看,谁来啦?向小兔、小象问好 二、通过故事进行活动1、讲故事(一) (1)提问:a怎样把脸洗干净?大家讨论b我们要做好什么准备工作?
同学们,老师们,大家上午好。XX年就这样悄无声息地过去了,XX年也就这样悄无声息地来了。对于XX年,我们xx在高考中取得了辉煌的成绩,让我们找回了xx昔日的雄心;对于XX年,我们在新高一的招生中,取得了难得的好成绩,让我们找回了xx昔日的自信。对于XX年,我想利用这次国旗下的讲话,和大家聊聊,对于我们xx的学子,应该以什么样的形象来面对XX年,因为这一年是特殊的一年。同学们,今年是原xx一中高中部迁校重建二十周年,是xx市高级中学挂牌成立二十周年,你们准备以什么样的形象,来回报我们的学校,来回报我们的线校,来回报我们的大xx?你们为此又准备好了吗?同学们,xx的学子应该是斗志昂扬的,你们说是不是?姑且不论我们在高考中能够取得什么样的成绩,但至少在意志上我们就要能够战胜自己。高中三年对我们的挑战,远不只是知识的挑战,更是意志的挑战,没有坚持不懈的意志,没有不可战胜的意志,就不可能出成绩。因此,我亲爱的同学们,当我们跑操时手还放在口袋里,当我们晚自习时还在聊天,当我们上课时还在睡觉,这些似乎并不应该是xx学子的形象,xx不需要这样的学生,我们也不忍心看到我们的学生有这份模样。你们要有你们自己的精神,你们要有你们自己的意志,这可能和我们不一样,但你得有精神,你得有意志,否则大家就会瞧不起你。同学们,我们需要有个性的学生,但我们不需要颓废的学生。
人们曾用这些词语形容老师:蜡烛、泥土、春蚕、园丁。这些语言既表达了人们对教师的尊敬,也表达了他们对教师的希望。教师是奉献者,教师是耕耘者,桃李满天下的时候,教师是收获者。他们收获的不仅仅是学生的成长,更有社会的进步。所以说,教师的角色是多么的重要。 韩愈说:师者,所以传道、授业、解惑也。教师与学生之间是传导与接受的关系,当学生从家长手里交托到教师手里时,教师的角色发生了转变,但是谁能说不是学生改变了教师呢?学生们永远年轻的思维与灵魂赋予了教师们生生不息的求知态度,学生们活跃丰富的头脑传达给教师灵活知性的教学理念,学生们的态度和表现决定着教师的教学准则与方法。这样,教师与学生的角色互换了,我们是共为一体的关系。我中有你,你中有我。 而社会发展到今天,科学技术飞速进步,社会急剧变革,计算机及信息技术在教学中的的应用,师生之间已经不完全是单纯的传递和接受关系了,学生可以从其他渠道获取知识,有时候甚至在某些方面比教师知道的还多,教师和学生的关系也不那么单一了,教师的角色多元化了。在现代,教师不仅是教学过程的设计者,还是学生学习的引导者和促进者,是教学工作和学生学习生活的组织者和管理者,更是一位教学的反思者和研究者。在这诸多的角色体系中,不管是那一个角色没有演好,都将面临职业生涯的挑战。而这么多的环节之中,最重要的和贯穿始终的就是师德师风的培养和表现。
为规范食堂服务人员培训,保障学生餐饮安全,根据《食品安全法》、《食品安全法实施条例》和《餐饮服务食品安全监督管理办法》等法律、法规及规章,制定本管理制度。 一、餐饮服务从业人员包括新参加工作和临时参加工作的餐饮服务从业人员必须经过培训、考核合格后,方可从事餐饮服务工作。 二、食品安全管理人员应制定从业人员食品安全教育和培训计划,组织各部门负责人和从业人员参加各种上岗前及在职培训。
2、膳食工作要坚持为师生员工生活服务的宗旨,以“管理育人”、“服务育人”为目的,开展各种形式的经营服务活动,坚持优质服务,讲究职业道德。 3、食堂工作人员必须持有效的健康证和卫生知识培训合格证方可上岗。上班时间要穿工作服,戴帽、口罩、号码、胸卡等;出售直接入口食品时,必须使用售货工具。 4、采购验收食品应当无毒、无害,符合食品卫生标准和营养要求,且有良好的感官形状。 5、加工烹饪食品的营养要搭配合理,要符合中学生生理发育的需求。
1、 进菜、售菜价格公开,成本核算正确。每日凭原始进料单进帐,日结日清。 2、 严格遵守劳动纪律,按时上下班。禁止在食品加工所吸烟,严禁在上班时间喝酒。按时开饭送菜,按时供应开水。 3、 呀爱护公物,食堂餐饮具一律不出错,如有遗失,需及时上报总务处,由总务处核实处理 4、 严格执行《食品卫生法》和饮食卫生“五四”制保持厨房、饭厅及周围环境整洁,物品摆放有序、定位,讲究个人卫生,上班时间必须穿戴工作衣帽。
一、学校总务处对食堂安全负监管责任,总务管理员具体实施对食堂经营的监督管理,做好饮食卫生安全和治安防范的监督检查工作。 二、食堂经营者为食堂安全直接责任人。食堂经营人员必须接受学校总务处的管理和监督,遵守学校的规章制度,守法经营。 三、食堂经营人员要严格执行《食品卫生法》、《学校食堂与学生集体用餐卫生管理规定》和炊事人员上岗服务的有关准则,确保饮食卫生安全。
1、加强宣传和教育,使全体师生了解食物中毒及其他食源性疾患的症状表现。 2、课任教师和班主任每天主动关心学生的健康状况。 3、一旦发生食物中毒及其他食源性疾患时,必须逐级上报,不得瞒报。 4、发生食物中毒事故后应立即停止供应一切食品,保护现象,并将中毒师生及时送往医院救治。 5、发生食物中毒或其他食源性疾患后,应立即将有关情况上报县委、县政府和教育及卫生行政部门,必要时向保险、公安、工商部门报告。
各位来宾老师们,同学们:大家好!今天,我们怀着无比喜悦的心情,在这里为20XX级的本科新生举行隆重的开学典礼。首先,我谨代表学校以及全体师生员工,向新同学们表示最热烈的欢迎!向呕心沥血哺育你们健康成长的父母亲人和中学老师表示最诚挚的祝贺!同学们,你们今天走进的这座校园,每年都有一批像你们一样,来自大江南北乃至世界各国的最优秀的精英学子加入进来,传承着xx大优秀的传统和深厚的学术积淀,令古老的燕园永葆青春;更有一代又一代xx大人走出象牙塔,把母校科学民主、追求真理的种子传播开去,发扬光大。xx大学是一块圣地。她诞生于民族危亡、内忧外患的危难之秋。作为中国第xx所现代意义上的综合国立大学,自建校之日起,xx大就被赋予了变法维新、强国富民的历史使命。在她xxx年的历史长卷中每一页都写满了xx大人前仆后继,为谋求民族独立、国家解放和人民富强所做的不懈求索和拼搏。xx大是中国新文化运动的中心、五四运动的策源地,是马克思主义和科学、民主思想在中国传播的最初阵地。李大钊、陈独秀、毛泽东等一大批中国革命的中坚力量都曾在这里学习或工作过。无论是“一二.九”运动回荡在红楼的振臂疾呼——“xx大,起来!”,还是抗日战争时期西南联大“刚毅坚卓”的校训;无论是文革结束后的思想解放,还是改革开放以来的科教兴国和人才强国。在不同的历史时期,xx大的命运始终与国家和民族的命运紧紧连在一起,在中华民族谋求独立和解放、振兴与发展的艰难历程中,xx大学都做出了不可磨灭的重要贡献。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力. a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;
本节内容是学生学习了任意角和弧度制,任意角的三角函数后,安排的一节继续深入学习内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数知识的基础,在教材中起承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。课程目标1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.数学学科素养1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明重点:理解并掌握同角三角函数基本关系式的推导及应用; 难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。