一、各小学、幼儿园要对本辖区接送学生的车辆进行一次全面的摸底排查,并做好对接送车辆的详细登记,特别是幼儿园的接送车,更要建立清楚的台帐。 二、学校要指定一名教师负责接送小学生、幼儿的车辆管理,督促有车单位或个人建立健全学生接送车辆管理制度,并要求经常与学校保持联系,掌握学生接送车辆的情况。
(一)实验教学目标:1.知识与能力:①了解磁铁间同极相斥,异极相吸的性质;②认识磁铁的南北极,知道磁铁能指南北方向。2.过程与方法:①学会做磁铁指南北及磁铁间同极相斥、异极相吸的实验;②能画出实验示意图,并标出方向。
尊敬的学校领导、老师,亲爱的同学们:大家早上好!今天我讲话的题目是“发展艺术教育提高审美情趣”。近期不少教育界、学术界的有识之士呼吁,国民艺术教育应该成为人们关注的一个社会问题。这里所说的艺术教育,不同于培养专门艺术人才的专业教育,而是指提高同学们的文化修养、鉴赏能力、审美情趣。艺术素质教育的目的集中在人格的培养上。注重培养智力为知的素质,气质为情的素质,性格为意的素质,能力为技的素质是我们追求的目标。艺术教育是渗透性教育即在语文、 数学、英语等学科教学中渗透艺术教育。它对于陶冶人们的思想情操,提高人的审美情趣,使人树立崇高的审美理想,具有其它教育所不可替代的作用。拿艺术教育中的美术教育来说,它是通过各种教学实践活动,使同学们在直接感受中了解、认识美,在感知中理解鉴赏美,在感悟中体现和创造美,从而达到较深刻的审美意识。鲁迅先生曾指出:“美术可以辅翼道德,美术之目的,虽与道德不尽符,然其力足以渊邃人之性情,崇高人之好尚,亦可辅道德以为治。”由此可见,美术能陶冶人的情操,净化人的心灵,丰富人的感情,让人们心身健康地发展,培养人的高尚品德和审美意识,使人树立正确的人生观……
老师们,同学们:大家好,今天讲话的题目是:强化安全意识,提高避险能力。迈着坚实的步伐,伴着丰富多彩的校园生活。我们已经踏过了多半个三月,在这个生机盎然的三月即将结束之际,我们将迎来一个特殊的日子那就是:全国中小学安全宣传教育日。十六年前,全国中小学安全宣传教育日被国家有关部门确定于每年三月最后一周的星期一。今年教育日的主题是“强化安全意识,提高避险能力。”在这个特殊日子即将来临之际,我们应该怎样做呢?一、从我做起,确保交通安全“没有规矩,不成方圆”首先我们要认真学习法律法规,遵守交通规则,加强安全意识,树立交通安全文明公德。更要提升交通事故防范能力,尤其是上下学途中、学校高峰期,更要保持防范意识。
各位老师、同学们:大家好!校园安全与我们每个师生密切相关,它关系到能否健康成长,能否顺利地完成学业;也关系到我们的老师能否在一个安全的环境中教书育人。因此,我们必须酒醒地认识到“安全无小事”,“隐患就是事故”,必须时刻牢记。为了进一步做好我校的安全教育工作,现提出以下几点要求,希望各班级,各位同学认真做好:1、要时刻保持高度的安全意识,认真学习相关的安全自护自救知识,切实提高自我防护能力。2、要注意课间休息文明,不大声喧哗,不追赶打闹,出进教室不奔跑,不嬉戏,不在班门口玩耍。3、要注意运动安全。上体育课前要作好准备活动,运动时要遵照老师的要求,不剧烈碰撞,不违规运动。防止运动器材伤人。4、要注意用电安全。不乱动教室内的电源开关和插座,不要用湿布擦电器开关。
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
(二)活动准备: 1.一幢7层楼的房子 2.1——7的数字卡 3.7个动物(大象、鸭子、小狗、小猫、老鼠、公鸡、兔子) (三)活动过程: 1.复习7以内的数量。 师:“熊猫老师开始上课了,看看它又哪些学生?共有几个学生?我们一起数一数?(数字7)” 2.引导幼儿帮助动物排队,初步感知理解序数的意义。 “熊猫老师要带它的动物朋友出去做游戏了,它要求小动物排着一条整齐的队伍出去,我们来帮助它们排队,好吗?(出示小红旗),排队要有个要求,要从红旗这里排,从左往右一个一个排在红线上。 (1)你们真棒,很快就帮小动物们排好了队。 (2)排在第一个的是谁?谁排在第三个?大象排在第几个?
1、认真研究教材。吃透教材是教师进行有效课堂教学的立足点。除了教学的重点,难点的把握,教师还应该考虑到教材的重组与延伸。 2、仔细推敲教学方法。随着网络的的普及,教师可以利用的资源是越来越多了,教师交流教学方法的渠道也是越来越广,我们可以发现相同的教学内容往往有多种不同的教学方法,如何选择适合自己班级学生的教学方式在教学中有着举足轻重的地位。 3、有针对性的设计课堂练习。学生吸收知识第一印象往往十分重要,而教师在课堂上设计的听说读写各式练习情况往往往直接影响着学生课后练习的正确率。
老师们,同学们,早上好!今天我在国旗下讲话的题目是《玩转数学,你能做到》。怎么想到要用“玩转”这词呢?因为我看到现在已很少有同学能以愉悦的心情对待数学的学习,若任由这种压抑持续,你会发现,灵感会逐渐枯竭,也会失去对未知探索的激情。我们真的可以做得更好些。可以在以下几方面做些尝试。1、重视自学。因为自学所获得的数学知识包含了自己的理解,掌握得更牢固,理解得更深,更因为自学习惯的养成、自学能力的提高有利于人的终生发展。数学如何自学?当然就是看书了。看数学书和看故事书有什么不同呢?故事书的一般方式是品味当前的内容,期待着后面的内容。而看数学书的方式应该是理解已经看过的内容,然后推测下面又是什么。就是你不要等书上写出来、不要急于往下看,先看能不能自己解决问题。看玩书后,还要检验是否读懂数学书。如何检验?因为我们的数学书,大多数在每一节后面都给你配了题目,你只要前面看完了,后面的题目做得出来了,就基本可以告诉自己,我前面看懂了。如果你前面看了,后面这些题目都做不出来,你还得重新再去看过。不要说,“我看过了,但是后面题目我一道都做不出来。”那你前面就没有用心去看过,我提议你要想着读数学书,这个想着,就是一边看一边想着,要动脑筋的看。
大全集团作为工程电气、新能源、交通技术三大产业领域的领先制造商,拥有百亿资产的多元化、国际化、品牌化企业集团,近年来致力于发展光伏产业,自20**年投资建设多晶硅项目以来,就已把万州作为发展光伏产业的战略基地。目前多晶硅项目达到年产4000吨的规模,技术层次、产品质量、运营效益、环保水平国内领先、国际一流。今年5月,重庆大全太阳能有限公司注册成立,计划投资30亿元,建设1000兆瓦硅片项目,一期250兆瓦年内建成投产。整个项目达产后,不仅年销售收入将达到100亿元,可提供4000个就业岗位,更重要的是,将使大全在光伏领域的竞争力得到极大提高,一举占据新能源产业的制高点!
首先,非常高兴、也非常欢迎各位家长来校参加今天的活动。你们含辛茹苦、倾注心血、倾其所有地养育孩子。我知道,此刻,作为父母,你们的内心会有诸多的感慨,酸甜苦辣挥不去,百般滋味上心头,但更多的一定是满满的骄傲、甜甜的幸福和殷殷的期许!XX中学感谢全体家长三年来对学校工作的信任、理解和支持。因为有你们,我们的学生才得以无忧成长、走向优秀;因为有你们,XX中学才得以不断发展、品质提升。我提议,让我们用热烈的掌声向家长朋友们表示诚挚的欢迎和衷心的感谢!
本合同是由以下双方于 年 月 日签订的:中国 是根据中华人民共和国法律正式成立并注册的企业法人(简称“买方”); 国 公司(简称“卖方”)。 鉴于卖方多年来从事 系统的设计、生产、销售业务并为该系统提供服务,并在进一步开发; 鉴于买方愿意建立一个 系统; 鉴于引进 系统将会提高科学技术水平,改进 的质量和类型,在先进技术产品的使用及服务方面提供培训机会,并且通过创造一种平等、积极的工作环境促进工人的权利和尊严,从而对中国人民做出贡献;鉴于按照平等互利的原则,经友好协商,买方已决定它愿成为 系统的使用人,而卖方愿意提供该等系统供买方使用。 因此,考虑到本合同中所含的相互条款和协议,现双方特协议如下: 1.双方间的协议(简称“合同”)由本合同所规定的条款和条件以及以下所提及的附件构成: 附件一 系统组件 附件二 交货和安装时间表 附件三 价格和支付条件 附件四 产品说明和规格 附件五 卖方软件许可合同 附件六 软件分许可合同 附件七 租赁合同
本合同是由以下双方于 年 月 日签订的:中国 是根据 中华人民共和国法律正式成立并注册的企业法人(简称“买方”); 国 公司(简称“卖方”)。 鉴于卖方多年来从事 系统的设计、生产、销售业务并为该系统提供服务,并在进一步开发; 鉴于买方愿意建立一个 系统; 鉴于引进 系统将会提高科学技术水平,改进 的质量和类型,在先进技术产品的使用及服务方面提供培训机会,并且通过创造一种平等、积极的工作环境促进工人的权利和尊严,从而对中国人民做出贡献;鉴于按照平等互利的原则,经友好协商,买方已决定它愿成为 系统的使用人,而卖方愿意提供该等系统供买方使用。 因此,考虑到本合同中所含的相互条款和协议,现双方特协议如下: 1.双方间的协议(简称“合同”)由本合同所规定的条款和条件以及以下所提及的附件构成: 附件一 系统组件 附件二 交货和安装时间表 附件三 价格和支付条件 附件四 产品说明和规格 附件五 卖方软件许可合同 附件六 软件分许可合同 附件七 租赁合同
本合同是由以下双方于 年 月 日签订的:中国 是根据中华人民共和国法律正式成立并注册的企业法人(简称“买方”); 国 公司(简称“卖方”)。 鉴于卖方多年来从事 系统的设计、生产、销售业务并为该系统提供服务,并在进一步开发; 鉴于买方愿意建立一个 系统; 鉴于引进 系统将会提高科学技术水平,改进 的质量和类型,在先进技术产品的使用及服务方面提供培训机会,并且通过创造一种平等、积极的工作环境促进工人的权利和尊严,从而对中国人民做出贡献;鉴于按照平等互利的原则,经友好协商,买方已决定它愿成为 系统的使用人,而卖方愿意提供该等系统供买方使用。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。