【学习目标】1.知识与技能:知道氧气的制取及检验方法,复习巩固氧气的相关性质。2.过程与方法:通过“探究能使带火星木条复燃所需氧气的最低体积分数”的探究性学习,学习科学探究的基本方法。3.情感态度与价值观:提高实验设计的能力和合作意识,复习巩固相关的基本操作,培养学习化学的兴趣。【学习重点】氧气的实验室制取操作步骤和性质检验。【学习难点】实验操作过程中的注意事项。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习引入:实验室用高锰酸钾制取氧气的反应原理是什么?操作步骤有哪些?2.明确学习目标,由学生对学习目标进行解读。合作探究 生成能力阅读课本P45~P46的内容。提出问题:实验室加热高锰酸钾制取氧气的实验中,使用了哪些仪器?哪部分是气体发生装置?哪部分是气体收集装置?为什么可用排水法收集气体?讨论交流:结合化学实验基本操作和氧气的性质讨论归纳。
一、说教材:《北冥有鱼》是庄子的作品,文本通过丰富的想象和生动的比喻,为我们揭示了庄子思想的精髓:逍遥游。这篇课文是初中语文八年级下册第六单元的第一篇文章,属于讲读课文。二、说目标:根据《全日制普通中学语文教学大纲》规定:高中生“要诵读古典诗词和浅易文言文,理解一定数量的名篇”。据此,我设置了一课时内容,确立了如下教学目标:(一)知识和能力目标:1、积累文言知识,掌握重点的实虚词、句式、词类活用等文言现象。2、理解《北冥有鱼》语言特点和写作方法。(二)能力目标:诵读课文,在了解文章大意的基础上体味作者的思想感情。(三)德育目标:了解庄子及《北冥有鱼》的基本哲学思想,并且辩证的看待这种思想。
一、说教材1、教材简析《虽有嘉肴》是人教版八年级下册第六单元中的一篇文言文,本单元文言文的教学重点是:能借助注释和工具书读懂课文大意,然后在反复诵读中领会它们丰富的内涵和精美的语言,并积累一些常用的文言词语。2、教学目标(1)熟读课文,并能准确地翻译、背诵全文,积累常用文言词语的用法。(2)理解文中所蕴含的道理,提高学生的语言表达能力和综合分析能力。(3)联系实际,用正确的学习方法指导自己的学习。3、教学重点难点教学重点:积累重点文言字词,熟读并背诵课文。教学难点:准确翻译文句,理解文中所蕴含的道理。
一、说教材: 《〈诗经〉两首》是初中语文教材8年级下册第3单元的课文,单元教学重点旨在让学生了解古代诗歌的发展进程、思想感情及其艺术效果,提高学生的诗歌鉴赏能力。本次课将要学习的《关雎》和《蒹葭》两首诗都是诗经的名篇,两首诗在主题内容上是相似的,情感基调是相近的,同时在艺术手法方面也都运用了重章叠唱和赋比兴的方式。 2、教学目标根据本课特点,现将教学目标拟订如下:⑴知识目标:了解《诗经》的基本常识,体会赋、比、兴的艺术手法,掌握四言诗的诵读节拍。⑵能力目标:培养学生结合注释,读懂诗作的能力。背诵课文,培养和提高学生准确把握作品的艺术形象和思想感情的能力。⑶情感目标:使学生了解我国古代劳动人民对真挚爱情的向往,陶冶高尚的情操。
一、说教材:《操场上》有一幅表现操场上热闹的图,6个表示体育运动的词语和一首儿歌。图上画了小学生在操场上所玩的大部分体育活动,儿歌概括了操场上活动的情形。通过这节课的学习,可以激发学生参加体育锻炼的兴趣。我上的是第一课时,在这节课上,我安排的学习任务是认读课文中的12个生字,学会写7两个字。二、说学生:一年级学生年龄较小,大多数学生活泼好动,大胆且独立,对事物具有积极乐观的态度,有意注意的时间较短,好动、好玩是他们的天性。所以我就要想尽办法,变着法儿的把他们引到课堂中来,引导他们主动一些的参与到我们的学习中。
1、课件出示教材第12页图片。学生思考问题,当你们遇到这样的情况时,你们会怎么做?学生活动;学生讨论交流。教师小结:孩子们,你们的做法非常正确。我希望你们能够按照自己说的那样去做,成为当之无愧的开心果。2、课件出示教材第13页情境图(扫地的妈妈咳嗽;唉声叹气的爸爸;发怒的爷爷;哭泣的小妹妹。)请同学们猜一猜这些人遇到了什么情况?你们是怎么判断出来的?你们会怎么做呢?学生活动:学生思考后畅所欲言。学生1:通过观察动作,我发现妈妈边扫地边咳嗽,然后我会帮助妈妈扫地,让妈妈休息。学生2:通过观察表情,我发现爸爸遇到不开心的事,然后我会给爸爸讲笑话,逗他开心。学生3:通过观察表情,我发现爷爷很生气,然后我会帮爷爷捶捶背,让爷爷放轻松。学生4:通过观察表情,我发现小妹妹在哭位,然后我会开导她,哄她开心。教师总结:同学们说得很好。我希望你们以后遇到类似的情况时,能够及时给他人带去快乐,做个“开心果”。
1、教学内容:人教版实验教材二年级(上册)77页的例4。用乘法解决问题的教学渗透于掌握乘法口诀的教学过程中。教材在注重让学生通过活动探索、理解乘法计算的含义和方法的同时,渗透用乘法解决问题的教学。在教学过7的乘法口诀之后,安排了有关“倍”概念的教学,以及如何用乘法解决有关倍的实际问题。2、教材的重点和难点:教材的重点是理解“求一个数的几倍是多少”就是“求几个几是多少”。教材的难点是用乘法计算的解题思路。3、教学目标:1.进一步加深对“倍”的含义的理解。2.学会运用“求一个数的几倍是多少”的方法解决实际问题,构建解决“求一个数的几倍是多少”的问题的思维模式。3.初步学会分析数学信息与所求问题之间的联系,学会看线段图。
(1)让学生先想象以后,再发言。(2)组织两个学生亲自在全班进行验证。(3)组织学生汇报交流。通过学生的想象、验证,不但又一次让学生直观感受了镜面对称的性质,而且有利于学生的想象力和空间观念的培养。二.实践应用。1.进入第四个情境。配音:“咦,这是什么呢?”学生会很快答:是只蝴蝶。提问:怎样做才能看见一只完整的蝴蝶呢?学生回答后,课件演示一遍。要求以组为单位,拿出准备好的图片,进行照一照,能知道它们分别是些什么。指名学生上台演示。2.进入第五个情境。配音:“哪个是她们是在镜子里看到的样子呢?”指名选择,并说出为什么?3.玩游戏,比一比谁的反应快。游戏要求:老师做动作,要求学生做镜子里的动作。看谁反应快,谁能坚持到最后,谁就是胜利者。通过想一想、照一照、连一连、圈一圈等活动。加深了学生对镜面对称的性质的理解,使学生亲身体验了数学与日常生活之间的密切关系,培养了学生的空间想像力。
教材分析连加、连减这部分内容是在100以内加减法的基础上进行教学的,是前面所学计算方法的综合练习。通过这部分内容的学习,可以进一步巩固所学的100以内的加减法,提高计算能力。学生在一年级时已学过连加、连减的运算顺序。因此,本节课的教学重点放在教学连加、连减的计算如何用竖式及竖式的简便写法计算。在复习这一环节中,我先设计了笔算两位数加、减法的习题。目的是让学生进一步巩固两位数加、减法的计算法则。然后通过两道口算题复习连加、连减的运算顺序。在进行例1的教学时,先让学生观察少先队员帮农民伯伯摘西瓜的情景图,收集信息,提出数学问题引导学生列出算式。然后放手让学生们尝试算出结果。教师指出简便写法让学生通过比较得出这种写法的简单所在。
2. 内容内在逻辑第一框题《延续文化血脉》包括“中华文化根”和“美德万年长”两目内容,主要阐述了中华优秀传统文化是中华民族的根,中华传统美德是中华文化的精髓。第一 目侧 重从中华文化的丰富与发展角度,讲述中华民族在五千多年文明发展中孕育、创造的源 远流长、博大精深的中华文化,重点落在“中国特色社会主义文化积淀着中华民族最深 层的精神追求,代表着中华民族独特的精神标识,为中华民族伟大复兴提供精神动力”, 我们要坚定文化自信。第二目侧重从代代传承的中华美德角度,阐释中华传统美德的丰 富内涵和重要价值,重点落在“中华传统美德是中华文化的精髓,蕴含着丰富的道德资 源,是建设富强民主文明和谐美丽的社会主义现代化强国的精神力量”。第二框《凝聚价值追求》学生在前一框题学习了中华文化的作用与发展,增强了文 化自信心;学习了中华美德的内涵及影响,明白了美德的力量在践行。
4. 央视出品,必属精品。中央电视台大型文化节目《典籍里的中国》,聚焦优 秀中华文化典籍,通过时空对话的创新形式,以“戏剧+影视化”的表现方法, 讲述典籍在五千年历史长河中源起、流转及书中的闪亮故事。这有利于 ( )①增强文化认同感和民族自豪感 ②弘扬中华优秀传统文化 ③吸收借 鉴优秀外来文化的成果 ④让中华文化成为世界上最优秀的文化A. ①② B. ①③ C. ②③ D. ③④5. 2021 年国庆档上映的电影《长津湖》,是一部可歌可泣的保家卫国的战争题 材电影,为我们再现了伟大的抗美援朝精神。抗美援朝精神体现了 ( )①以爱国主义为核心的时代精神 ②舍生忘死的革命英雄主义精神 ③以爱 好和平为核心的民族精神 ④勇于承担责任的革命奉献精神A. ①② B. ①③ C. ②④ D. ③④6. 2022 虎年春晚节目《只此青绿》,让全网发起了“青绿腰挑战” 。节目中, 舞者青绿长裙曳地,发髻高耸入云,缓缓转身,似翠山慢移,层峦叠嶂;挥袖之 间,是风吹过大山的痕迹,亦若瀑布流过山间,勾勒出一副绝美中国山水画。
1.举例说明什么时候用普查的方式获得数据较好,什么时候用抽样调查的方式获得数据较好?2、下列调查中分别采用了那些调查方式?⑴为了了解你们班同学的身高,对全班同学进行调查.⑵为了了解你们学校学生对新教材的喜好情况,对所有学号是5的倍数的同学进行调查。3、说明在以下问题中,总体、个体、样本各指什么?⑴为了考察一个学校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动的时间.⑵为了了解一批电池的寿命,从中抽取10只进行实验。⑶为了考察某公园一年中每天进园的人数,在其中的30天里对进园的人数进行了统计。通过本节课的学习,同学们有什么收获和疑问?1、基本概念:⑴.调查、普查、抽样调查.⑵.总体、个体、样本.2、何时采用普查、何时采用抽样调查,各有什么优缺点?
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。3、(延伸):若随意做一个多面体,看看是否还是那个结果。
两道例题,第一道题师生共同分析,第二道题学生自己分析。部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。四、课堂小结这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。提示学生通过对《日历中的方程》《我变高了》以及本节《打折销售》学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?目的:让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。此活动的目的是使学生不再处于被动状态,而成为积极的发现者。
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.