尊敬的老师,亲爱的同学们:大家好!马上就要到春分过后的第十五日,那是中国传统节日清明节。在这段日子里,万物生长,都是一副清洁明净的模样。它给人的印象却总是雨纷纷的,就像我们身边下着的小雨,这就是一年中最标致的清明轮廓。关于清明节,有这样一个传说。春秋时期晋公子重耳流亡时,曾累倒不起,群臣竟找不到一点东西吃。而介子推默默割下自己的大腿肉助重耳恢复了精神。多年后重耳当了国君,要赏赐当年的功臣,却唯独忘记了介子推。而这时的介子推同母亲隐匿在山林里,难以寻觅。在他人的建议下重耳烧起了山林,以为他会自己出来,不料想最后在柳树下发现了死去的介子推和他的母亲,以及介子推留下的劝君清明的谏言。次年晋文公领着群臣,登山祭奠介子推,那棵柳树又生长起来,重耳叫它清明柳,又把这天定为清明节,清明节日及感恩之情流传至今。
今天是3.23,引来了第55个世界气象日。世界气象日又称国际气象日,是世界气象组织在1960年决定把3.23定为世界性纪念日,每年确定一个主题。中国是世界气象组织的创始国之一。今年气象日的主题是“气候知识服务气候行动”。恰逢今天是xx高中第四周国旗下讲话,G1407班童泽轩同学以环保为主题,向大家介绍了世界气象日的有关信息。由于天气原因,国旗下讲话改为广播会议。世界气象日,与孩子们一起亲近气象——记xx第四周国旗下讲话童泽轩同学在演讲中说到,绿色环境是健康自然的一种象征,绿色能带给我们生机、带给我们活力,而绿色校园中的绿色也不就只是一种颜色那么简单。走进我们如今洋溢着书香味的校园,你会被那迷人的风景所吸引。漫步在校园里这一派绿景下,会使你感到精神振奋、心情舒畅。校园中的绿色风景,对我们是及其有益的。一节课后,站在走廊上看看校园中的绿,让我们精神达到更高更好的状态!在课余时间,同学们又可以在校园小道上走走,看看周围的景物,不是有着置身花园之感吗?
二、教学目标: 基于以上设计理念与教材简析,第一课时的教学目标定为: 1、多层次地朗读感悟第一、二自然段,感受体验liu伯承求治的镇定与手术前的坚定,产生敬佩之情。 2、读中悟法:回读感受、联系生活是朗读产生体验的好方法。 三、设计特色: 营造积极主动、用心投入的读书氛围,在由浅入深的朗读实践中自主解疑、探究、发现、感悟,在读中实现与作者、与文中沃克医生和军神liu伯承、与师生多维的对话过程,对liu伯承的钢铁意志受到强烈的内心震撼,并在回顾读书过程中.总结方法。整个设计,感性的读书探究中享受着无穷的读书乐趣,理性的读书解疑中体验着成功的无限快乐!
《同一首歌》的原型是30年代末一个名不见经传的年轻音乐人在上海沦陷后创作的。时逢国难当头,很多人梦想和希望破碎,生离死别。作者创作该曲,并配上词。以此激励自己和身边的人们对未来要充满希望。可当时的局面无法让这首歌传唱。据说作者后来去了延安就杳无音讯了。他的作品就此积压在音乐学院的资料堆中。到了80年代末才被陈哲、胡迎节等人发掘,整理,重新改创推出。创作于1990年,当时由歌手刘畅首唱,1991年杭天琪与香港歌星甄妮在春节联欢晚会上共同演唱《同一首歌》,这也是《同一首歌》第一次公演,成为回顾历届春晚经典歌曲的曲目之一,2000年央视举办《同一首歌》栏目,蔡国庆、毛阿敏等多人作为该栏目的压轴演唱。从此,《同一首歌》就像长了翅膀一样,飞进了千家万户,成了一首风靡全国的歌曲。
A段由4个乐句构成,第一、二乐句(第1~8小节)音乐流畅、平和,主题深沉、亲切、凝重,第三乐句(第9~16小节)是这个乐段的小高潮,接着连接第四乐句结束。A段音乐抒发人们经过辛勤劳动获得丰硕成果、欢聚一堂亲切交流时的真挚感情。B段也由4个乐句构成,第一乐句(第17~20小节)以下属和弦的分解形式,从高音开始,造成柔和的色彩和热烈的气氛,力度逐渐加强的处理,形成全曲高潮,抒发了人们激动、兴奋的心情,并与A乐段形成对比。第二乐句(第21~24小节)是第一乐句的变化重复,使感情进一步深化,体现发自内心的倾诉。第三乐句(第25~28小节)是A段音乐主题的变化再现,第四乐句中的九度大跳,再次抒发出人们兴高采烈的喜悦心情。歌曲最后的结束句是一个典型的由下属功能转到主功能的补充终止形式,使歌曲在祥和、喜庆的气氛中结束。B段音乐揭示了歌曲的主题思想——我们向着建设社会主义现代化的伟大目标,唱着“同一首歌”去迎接新的辉煌。
教学过程:一、导入。师:大家曾经一起学习、一起快乐、一起迷惘、一起长大,今天就让我们在同一首歌的旋律中,回忆述说我们走过的美好时光。二、教授新课。1、介绍歌曲。师:歌曲创作于1950年,作为十一届来运会开幕式电视直播的片头曲。播出后受到人们热烈的欢迎。《同一首歌》由陈哲、迎节作词,孟卫东作曲。1996年,著名男中音歌唱家廖昌永曾和孩子们在上海举行的特奥会上唱过这首歌,以后中央三台又设置了“同一首歌”栏目,《同一首歌》就是此栏目的主题歌。由此,《同一首歌》就像长了翅膀一样,飞进了千家万户,成了一首风靡全国的歌曲。2、学习歌曲。师:这首歌曲大部分同学都熟悉,但是否真正了解歌曲的内涵呢?并且是否能用歌声真切地表达歌曲的思想感情呢?4.14青海玉树发生7.1级大地震,全国人民齐心合力度难关,而最能表现此情此景的就是《同一首歌》!因此,我们应该学习一下,为玉树加油!下面我就跟大家一起,把这首歌深入的了解一下。3、在歌曲旋律的背景中,师生共同有表情地朗诵歌词。4、学生分组思考。(1)你对歌词“大地知道你心中的每个角落”,“同样的感受给了我们同样的渴望”中的“角落”、“渴望”是如何理解的?(2)歌词的主题思想是什么?师: 角落——失意、孤独、无助。感受——对人间真善美的感悟 沟通、理解、鼓励。
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范围是(0,3].解题技巧:(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.跟踪训练三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.【答案】见解析【解析】因为“x∈P”是x∈Q的必要条件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].五、课堂小结让学生总结本节课所学主要知识及解题技巧
本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件.C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容. 在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础. 本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用. 本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.课程目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集; 3. 能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求 两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及?问题;
它位于三角函数与数学变换的结合点上,能较好反应三角函数及变换之间的内在联系和相互转换,本节课内容的地位体现在它的基础性上。作用体现在它的工具性上。前面学生已经掌握了两角和与差的正弦、余弦、正切公式以及二倍角公式,并能通过这些公式进行求值、化简、证明,虽然学生已经具备了一定的推理、运算能力,但在数学的应用意识与应用能力方面尚需进一步培养.课程目标1.能用二倍角公式推导出半角公式,体会三角恒等变换的基本思想方法,以及进行简单的应用. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换的技巧进行三角函数式的化简、求值以及证明,进而进行简单的应用. 数学学科素养1.逻辑推理: 三角恒等式的证明; 2.数据分析:三角函数式的化简; 3.数学运算:三角函数式的求值.
(4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称量词命题,其否定为“存在实数m0,使得方程x2+2x-m0=0没有实数根”,它是真命题.解题技巧:(含有一个量词的命题的否定方法)(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.跟踪训练三3.写出下列命题的否定,并判断其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一个实数x,使x3+1=0.【答案】见解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命题.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。