一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
【活动重点】 理解顺数与倒数的内在规律。 【活动难点】 学习倒数、倒接数 【活动准备】 1、1—10磁性数字卡2套、方向箭头1个 2、青蛙10个,荷叶若干个 3、相同火车头图片2个(区别:车牌号不同) 4、高楼模型1栋、1—10粘贴数字1套 5、《开火车》音乐 【活动过程】一、开始部分: (一)教师自我介绍,表达认识新朋友的愉悦心情。 (二)教师以谈话的方式,导入青蛙,及要去参观青蛙的新楼房的主题,吸引幼儿的注意力和参与活动的积极性。 (三)教师与幼儿共同游戏进行知识铺垫。 1.通过拍手游戏感知数量之间多1与少1的关系。 2.数字感知多1与少1的关系:如:比2多1的数是几?比9少1的数是几?
【活动目的】1, 通过拍卖会的角色扮演活动,让学生辨析自己的价值观.2,了解每个人的价值观有所不同,进而学习尊重不同的价值观.【理论分析】人的价值观,在哲学上属于世界观,人生观范畴;在心理学上,则可以看作是一个人社会态度的重要组成部分.个人的价值观,主要受到他的社会文化背景,特别是家庭传统和教育的影响,同时也受制于一个人的个性,能力,情绪等心理因素.本活动主要是角色扮演和价值辨析两种心理辅导方法的综合运用.角色扮演的目的,在于运用戏剧表演的方法,使学生发现问题,了解冲突所在,从而洞察人际关系.由于角色扮演能使人亲身体验和实践他人的角色,从而可以更好地理解他人的处境,体验他人在各种不同情况下的内心情感,同时反应出个人深藏于内心的感情."魔术店"是角色扮演的一种方法,它是一种类似商店内买卖的方法,如让老师扮演店主,店里贩卖各种东西,学生扮演买主,通过拍卖的方式,帮助学生了解有关爱情,友情,健康,金钱等多方面的价值观念.在拍卖过程中,学生个人的价值观念会直接影响他在拍卖时的选择,学生从舍取中可以了解自己的价值观和人生态度,这样有助于学生对自己价值观念的思考和澄清."价值澄清"是美国的大学教授路易斯·拉斯等人在对传统价值观教育进行研究分析的基础上提出来的.价值澄清的目的不是灌输给学生一套事先安排的严谨的价值观,而是通过一定的过程,让学生反省自己的生活,对自己的行为负起责任,从而澄清自己的价值观.这种方法很适合在集体的情境中使用.学生可以在共同的价值辨析讨论中,经过一系列心理湖动的过程来达到主动学习,自我评估,自我改进的目的.【活动形式】小组讨论,价值拍卖会【活动准备】准备拍卖会上需要的号码牌,按学生学号做49个.【适合对象】高中一年级【活动课时】1课时【活动过程】上节课我还欠大家一个回答,关于心理辅导活动课呢,一些同学把它和心理咨询弄浑了,以为心理嘛就是要去心理咨询.个别咨询是同学有了一些困难或苦恼来找心理老师进行个别交流,寻求老师的帮助.而心理辅导课呢,面对的是全班同学,大家在一起游戏,一起交流过程中能够更好地认识自己,也能进一步了解他人,别人往往是自己的一面镜子.通过这个课,希望大家能学会自助和互助.这样说不知道大家有没有清楚一些,课后可以再一起交流,现在回到我们今天的课上.课的主题呢我先卖个关子,先听听我接下来的这个问题.
目的:1、让幼儿学会仿编和解答4的加减应用题。2、在生活情景中能根据水果卡片自编4的加减应用题。准备:1、知识经验准备:请家长带 幼儿去买东西,使幼儿了解一个买与卖的过程。2、物质准备:准备各种水果卡片,人手4个替代物作钱。过程:一、以“帮农民伯伯摘果子”引入。“小朋友,果园里的水果都成熟了,农民伯伯想请你们帮他摘水果,你们愿意吗?”(愿意)二、游戏“摘水果”。师交代游戏玩法和规则。三、分类活动:分水果。1、引导幼儿将自己所摘的水果跟同伴之间进行交流。2、交代任务:将各种水果分别放在筐里。
甲乙双方本着平等、互惠互利、诚实信用的原则,就甲方从乙方采购四款订制型号的隔热条事宜达成以下协议:一、产品型号、米重、单价及模具价格序号 产品图形 米重(g/m) 产品编号 产品单价(元/米) 模具价格(元/套)1 2 3 4 备注 品牌为: ;尼龙原材料为: 。1.1 以上产品单价含17%增值税,甲方指定收货地点,订货批量不低于 米/次,运费由乙方承担;1.2合同期限内,甲方购货订量低于 米/次的为散单,散单次数≤5次,则全部由乙方承担运费;散单次数>5次时,乙方负责代办运输,乙方只负责货物出厂到甲方指定的货运公司的短途运费,其他长途运费和市内送货费用由甲方承担并向运输公司支付;1.3 乙方按照双方确认的图纸数据来开模具(附图纸),样品尺寸符合图纸数据(尺寸公差见图纸标注)、表面光滑视为合格样品;
今天,伴着雄壮的义勇军进行曲,鲜艳的五星红旗再次在我们眼前冉冉升起。回首刚刚过去的两个月,它记录着每一个学子和老师的辛勤,更蕴含着我们的智慧。作为荣智学校新一届的初中生,我们为学校的方方面面感到骄傲,无论是环境优雅的教室还是功能齐备的多功能展示厅,无论是生物实验室、微机室等专用教室,还是图书馆等供我们学习的场所都显得那样舒适温馨,而我们的老师,个个精神抖擞,正是他们的精心呵护与谆谆教诲,才有我们学生的健康成长。他们以纯洁的心灵塑造我们的灵魂,以健康的人格魅力带动我们的品格养成,从而营造我校和-谐健康,洋溢着人文色彩的校园氛围。同学们,求学阶段对于我们每个人来说,就像是手中刚刚拿到的新书一样,散发着油墨的清香,蕴藏着很多待开发的秘密,需要我们去探索,“言行规范,健康发展,学有所长”是学校对我们的要求。因此,正如今天一样,当我们迈进校门的那一刻起,我们要说,新的一天我们要从遵守纪律做起。俗话说:“没有规矩不能成方圆。”纪律是做好一切事情的保障,没有纪律的约束,是什么事情也做不好的。大家知道,鲁迅先生书桌上的“早”字,是严格自律的表现,是自觉守纪的典范,正因为这样,鲁迅先生才成为伟大的文学家、思想家、革命家。曹操“割发代首”,带头守纪,古往今来传为佳话。
关于高中秋季新学期国旗下讲话稿尊敬的各位领导、老师,亲爱的同学们,大家好!我是学校学生会主席、高三(5)班的朱江薇,今天我给大家演讲的题目是《“自责”,“自强”,而后自“成”》。告别虚浮躁动的夏季,迎来温婉和顺的秋天;告别乏味空虚的假期,更期待绚丽充实的校园。从今天起,我们将站在新的起点,仰望新的高度,一步一步踏实前行,用行动证明自己逐渐走向成熟,走向精彩。清代金缨在《格言联壁》中说道:“自责之外,无胜人之术;自强之外,无上人之术。”意思是说,除了严于律己,没有可以胜于别人的办法;除了自强不懈,没有可以超越别人的办法。只有自觉要求自己,自觉约束自己,才是自我完善的最佳途径。说实在的,靠他人的约束与教育,只能起到小部分作用,起决定作用的绝对是自己。但是,我们毕竟是处于青春期的少年,心智虽正在走向成熟与完善,但冲动与浮躁时常伴随着我们。在成长过程中,困惑与迷惘时常会折磨我们。这就需要环境来约束与促成我们不断走向成熟与完善。
九月是个舒爽的季节,在这个季节里,没有夏天的炎热,也没有冬天的寒冷。在这样的令人快乐的季节里,人们可以做着自己喜欢的事情。然而在1931年的九月,你们可知道中国发生了一件多么令人痛苦的事情。你可知道八十二年前的东北三省正在经历一场浩劫,一场磨难。有首歌叫做《松花江上》,他用歌词和旋律记述了这场发生在东北人们身上的灾难:我的家在东北松花江上,那里有森林煤矿,还有那满山遍野的大豆高粱。我的家在东北松花江上,那里有我的同胞,还有那衰老的爹娘。“九.一八”,“九.一八”!从哪个悲惨的候,“九.一八”,“九.一八”!从那个悲惨的时候!脱离了我的家乡,抛弃那无尽的宝藏,流浪!流浪!整日在关内流浪!哪年,哪月,才能够回到我那可爱的故乡?哪年,哪月,才能够收回我那无尽的宝藏?爹娘啊,爹娘啊!什么时候,才能欢聚在一堂?是啊,就是因为九一八,多少人背井离乡,有多少亲人在这场战争中死去。现在就让我们来了解并记住这段惨痛的往事。
为大家收集整理了《XX中学生国庆节国旗下讲话稿》供大家参考,希望对大家有所帮助!老师、同学们,当我们站在这里,听着雄壮激昂的国歌,目睹着五星红旗冉冉升起,不禁为身为中华儿女而感到自豪。再过几天就是国庆节,在这普天同庆的大喜日子,让我们唱出我们心中对祖国的赞歌。今天我演讲的题目是《我骄傲我是中国人》我骄傲我是一个中国人!我骄傲我拥有这个响亮的名 字,我爱我的祖国!我爱您悠久古老的历史,更爱您壮丽优美的山河,我爱您灿烂辉煌的文化,更爱您顽强不屈的精魂内核。昨天的岁月冲刷着记忆的河床,它会带走青春,带走欢笑,带走泪水,但却无法带走您五千年的积淀!我们以〈〈诗经〉〉的歌喉;以〈〈橘颂〉〉的音韵;以古风与乐章、律诗与散曲;以梆子与鼓词、京剧与秦腔。唱响了您悠久岁月的辉煌,唱出了您壮丽山河的力量!我骄傲我是一个中国人!我是龙的传人,是炎黄的子孙!我骄傲,我的骨子里流淌着中国血。百年屈辱,百年抗争。在被欺侮的岁月里,您经历了太多痛苦的洗礼,也展示了无数奋斗的欣慰!赵登禹手中的大刀;张自忠体外的血肠:杨靖宇腹中的草根。
作为教师,应该把自己的满腔热血投入到自己所热爱、做从事的教育事业,对自己的事业充满激情永无止境积极追求。俗话说“热爱是的老师”。热爱自己的教育事业会觉得其乐无穷,热爱自己的事业,就会多了更多的激情,少了许多牢骚和抱怨,热爱自己的教育事业再苦再累也无怨无悔,热爱自己的教育事业,就不会去计较得失。作为教师,应该有一颗博大的责任心,爱教育事业,最终落脚点在爱学生爱孩子。高尔基说过“谁爱孩子,孩子就爱谁”。只有爱孩子的人,才能教育好孩子,师爱是每一个教师的精神财富,也是人类的精神财富。教师要有无私的爱,以高尚的人格,渊博的知识,博大无私的爱去感染学生,成为学生心中的楷模。作为一名教师,我要拥有自己的信念,不断提高自身素质,用满腔的热忱把教育教学工作做好,更好的为学生服务,从而不负于人类灵魂的工程师这个光荣称号。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。