方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
教学准备: 1、调查生活中浪费水资源的普遍现象。 2、搜集、制定一些节水措施。 教学过程: 一、利用谜语揭示课题。 1、主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?” 主持人口述谜语: “双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。” 二、从生活经验入手,导入学习。 1、生活中哪些事需要用水?你们家为何不用海水洗澡,洗碗,煮饭??.? 2、出示地球上海水与淡水的组成比例图,初步了解地球上淡水资源的匮乏情况。看了这幅图,你有什么想法? 3、地球上所有的淡水都可以拿来运用吗?你知道有多少淡水可以拿来运用? 4、小结过渡,导入“游戏”。
二、活动目的: 1、培养幼儿关心老人的情感。 2、体验与老人同过节的快乐。 1、增进艺术表现能力,学习运用学过的技能,合理地安排画面,画出爷爷奶奶的形象。 三、活动准备: 1、请爷爷奶奶来园参加活动。 2、幼儿自备自己制作的小礼物。 3、幼儿事先排练表演的节目。 4、纸笔幼儿人手各一份。
[活动目标]1、让幼儿认识水的有关性质及水的用途。2、萌发幼儿节约用水、保护水资源的意识。3、发展幼儿的观察和语言表达能力,为汶河位于家乡而自豪。 [活动准备]1、请家长配合生活中注意节约用水并有意识引导幼儿节约用水。2、实验用的小瓶、杯子、颜料、可乐、醋、透明的塑料细软管。3、(1)被污染水的挂图。 (2)正在滴水的自来水管。 (3)河里的鱼、虾、面临死亡的挂图。 (4)课前家长同幼儿参观汶河。
2、培养幼儿反应敏捷及注意力集中。准备:十六宫格、小落叶的图片若干,呼啦圈六个。过程:一、幼儿进场,要求幼儿的脚步随音乐的变化而迅速改变师:秋天到了,小树叶们从树上落了下来,跟着秋风姐姐跳起了舞。 l、听,风越吹越慢了,我们该怎么飞呢? 2、哟,风又大了,我们该怎么飞呢? 3、真累,坐下来休息一会儿吧!二、理解并学拍四分音符和八分音符 1、小树叶长得真漂亮,有几片小树叶也想飞上来玩一玩,你看,这片大树叶“*”的一声,就飞到天上去了。这片小树叶也想上来,可它有点害怕,于是又找了一片小树叶,两个人“**”两声也飞到了天上。 提问: A、大树叶是怎么飞上来的?(*)我们把大树叶飞上来的节奏叫一拍。 B、小树叶是怎么飞上来的?(**)小树叶很灵活,所以一下子就飞上来了。 C、一共有几片小树叶飞上来呢?(2片)我们把一片小树叶飞上去的节奏叫半拍,用手来拍拍看。 2、大树叶和小树叶飞上去的速度是不一样的,我们用手拍一拍。原来,树叶们呆在一起,就是一句好听的节奏了。(幼儿练习用手拍节奏) 3、落叶的节奏还会变呢!看,把他们的位置换一下,就变成什么样的节奏了? 4、谁能上来让落叶变成不一样的节奏呢?(请个别幼儿变换节奏,其余幼儿练习)
健康:1、感受南瓜节欢乐的气氛。2、通过活动,让幼儿知道多吃粗粮好。懂得吃东西要讲卫生。探索:1、能用各种感官,主动去了解南瓜的特点和作用等。2、能用普通话讲出南瓜明显的特征。表现:1、在活动中,培养幼儿的观察能 力、动手操作能力、语言表达能力、合作意识等。2、能用交流、谈话、游戏、分享、绘画、亲子活动等形式进行表征。二、情境活动1、亲亲南瓜 涉及领域:健康、探索2、蛤蟆吃南瓜 涉及领域:健康、表现3、幸福分享 涉及领域:健康、表现4、摘南瓜 涉及领域:健康、探索5、南瓜丰收啦 涉及领域:表现、探索
二、讲勤俭节约的故事1、指名讲自己课前搜集的勤俭节约的故事。2、勤俭节约是中华民族的美德,是五千年文明古国的优良传统,从厉行节约的晏婴到一钱太守刘宠,从一代名相魏征到民主革命家孙中山,都为我们留下一份份忧苦万民、勤劳天下的珍贵遗产。勤俭节约还是我国的建国方针。建国初期,毛主席曾说:“要使我们国家富强起来,需要几十年艰苦奋斗的时间,其中包括厉行节约、反对浪费这一勤俭建国的方针。”正是这一方针,才使我们年轻的共和国医治了几十年战争的创伤,甩掉一穷二白的帽子,屹立干世界民族之林老一辈无产阶级革命家鞠躬尽瘁、艰苦朴素的光辉事迹,更是彪炳千秋,中华民族正是具有这种精神,才能生生不息,不断繁衍。可是,经过我们班同学调查发现我们学校在这方面仍存在着一些不好的'现象,现在请同学展示一下你们课前调查的浪费现象。
计算器的面板是由键盘和显示器组成的。显示器是用来显示输入的数据和计算结果的装置。显示器因计算器的种类不同而不同,有单行显示的,也有双行显示的。在键盘的每个键上,都标明了这个键的功能。我们看键盘上标有的键,是开机键,在开始使用计算器时先要按一下这个键,以接通电源,计算器的电源一般用5号电池或钮扣电池。再看键,是关机键,停止使用计算器时要按一下这个键,来切断计算器的电源,是清除键,按一下这个键,计算器就清除当前显示的数与符号。的功能是完成运算或执行命令。是运算键,按一下这个键,计算器就执行加法运算。
活动要求:1、 各班级务必要邀请一位老师(辅导员或导师),若导生在校,则可邀请导生到场观看。2、 各班级要根据自身情况,由班长、学委负责组织,深入把握该次主题活动精神所在,拟定好方案。并且务必在举行主题班会前提前知会秘书处和学习部的系负责人,及时通知他们主题班会开展的时间地点。3、 各班级的班干部要积极参与主题班会的各项组织工作,做好考勤、场地、议程安排和讨论记录等工作。4、 活动过程注意时间,纪律等方面的控制。推荐活动时间为60分钟。5活动2天内,请各位班长将此计划书与总结书以电子版形式发到秘书处系负责人处.逾期不候.总结书的要求(400字以上):总结内容包括:总结本次主题班会的优缺点、以及工作建议等等。总结是主题班会的成果体现,请班级给予充分重视。班长签名:班会结束后2天内,请各位班长将此计划书与总结书以电子版形式发到秘书处系负责人处.逾期不候.
活动准备: 提供三种颜色不同的瓶盖个三个,每人一套1—4的数字卡片。活动过程:1、 分别取三种颜色不同的瓶盖个三个,一一对应排成三横排,中间一排的瓶盖不动,让三排瓶盖变得一排比一排多一个,讨论如何才能做到。2、 找出相应的数字卡片摆在瓶盖的左边,讨论:比3少1的数是几,应排在哪里;比3多1的数是几,应该排在哪里。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.
[例3]、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。四、巩固强化:1、一个正方体的截面不可能是( )A、三角形 B、梯形 C、五边形 D、七边形2、用一个平面去截五棱柱,边数最多的截面是_______形.3*、用一个平面去截几何体,若截面是三角形,这个几何体可能是__________________________________________________.4*、用一个平面截一个几何体,如果截面是圆,你能想象出原来的几何体可能是什么吗?如虹截面是三角形呢?5*、如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?6*、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。