二、孟子的仁政思想1.民本思想。孟子说:“民为贵,社稷次之,君为轻。是故得乎丘民而为天子,得乎天子为诸侯,得乎诸侯为大夫。”(《孟子·尽心下》)得到百姓拥护的人才能成为天子,得到天子欢心的人可以成为诸侯,得到诸侯欢心的人可以成为大夫,可见“民为贵”的道理。孟子在尖锐复杂的阶级斗争中看到人民的力量,认为社会安定的前提在于百姓的安居乐业,这一点在当时也是有积极意义的。2.邦国的主权在民。孟子与梁惠王谈话,梁惠王问:“天下恶乎定?”孟子回答:“定于一。”梁惠王问:“孰能一之?”孟子回答:“不嗜杀人者能一之。”梁惠王问:“孰能与之?”孟子回答:“天下莫不与也。”(《孟子·梁惠王上》)意思是说,如果一个君王不嗜杀戮,那么,天下没有不愿意把政权交给这个君王的人。万章问孟子:“尧以天下与舜,有诸?”孟子说:“否;天子不能以天下与人。”万章问:“然则舜有天下也,孰与之?”孟子说:“天与之。”
老师,同学们:早上好!今天我讲话的题目是:把微笑献给自己“六一”儿童节那天,同学们一定收到很多礼物。今天,老师送给你们一份迟到的节日礼物——自己的微笑。曾经有一天,一个愁眉苦脸的男孩来到老师面前,伤感地说:“我是一个学习成绩不好,又没有人爱的孩子,活着可真没意思!”老师送给他一块石头,说:“明天早上,你拿这块石头到集市上去卖,但不是‘真卖’。无论别人出多少钱,都不能卖。”第二天,男孩蹲在市场的一个角落,面前摆着那块石头的价钱,果然有人向他打听那块石头,而且价钱愈出愈高。
“六一国际儿童节”,通常简称为“六一”、“六一儿童节”,它是属于儿童的重要节日,下面是小编收集整理的迎六一国旗下讲话稿,欢迎阅读参考!!XX年迎六一国旗下讲话稿一 老师们、同学们:大家好!弹去五月的风尘,我们即将迎来六月的时光 。本周日,一个快乐而有意义的节日——六一国际儿童节就将要到来。在这里,我谨代表学校预祝全体同学六一节快乐!在各科学习中获取好的成绩!同学们,“六一”是我们最快乐的节日,“六一”也最高兴的日子。因为:我们是家庭的宝贝,更是家庭的希望。我们能够快乐地成长,家庭就充满欢歌与笑语。我们是学校的学生,更是学校的希望。我们能够全面地发展,学校就充满生机与活力。我们是社会的未来,更是社会的希望。我们能够和谐地发展,社会就充满热情与友爱。我们是祖国的花朵,更是祖国的希望。我们能够茁壮地成长,祖国就充满美好与希望。希望同学们:文明、好学、自主、合作。学会学习、学会生活、学会做人、学会创造。像大人一样富有责任心、富有使命感,堂堂正正做人,认认真真做事,快快乐乐学习,健健康康成长。做一个理想远大、品行端庄、学习优良、身心健康的共产主义事业的接班人。 最后,预祝同学们六一节快乐!谢谢大家!
欢庆“六一”儿童节!下面是小编收集整理的XX年幼儿六一国旗下讲话稿,欢迎阅读参考!!XX年幼儿六一国旗下讲话稿一 大家好,我是陈xx。今年六岁了,是大三班的小朋友。我很荣幸成为今天的升旗手。在幼儿园里,老师教会了我们感恩,教会了我们分享。老师就象妈妈一样关心爱护着我们。我们很幸福,很幸福!再过一周就是我们另一个妈妈的生日了——十月一日国庆节。我们要努力学习,锻炼身体,长大后建设祖国。小朋友,让我们一起大声祝福:祖国妈妈 生日快乐!敬爱的的老师,亲爱的小朋友们:大家好!我是大三班的xx。今天我能将鲜艳的五星红旗升上蓝天,感到无比的激动和自豪!我热爱运动,喜欢跑步,打乒乓球,跳绳,我可是班上的跳绳冠军哦!我还想对老师说:“老师,谢谢你们,你们辛苦了!是你们,在我遇到困难时,给我帮助;是你们,在我取得成绩时,给我鼓励;是你们,给了我一次又一次的锻炼的机会。今后,我要好好学习,天天向上!大家好!我是大三班的武xx,我今年七岁了。我爱我的幼儿园,爱我的老师,爱我的小伙伴。冬天已经悄悄的来临了,但是我不怕冷。我会拍球,现在我正在学跳绳,让我们一起动起来,赶走寒冷!我运动,我快乐!
师:Goodmorning,children.what’sthedatetoday?SS:Todayismarch31st.师:Verygood.TomorrowisApril1st.Tomorrowis__________SS:AprilFool’sDay!愚人节!(此起彼伏)师:whocantellusaboutAprilFool’sDay?SS:我知道!法国国王查理九世决定采用新改革的纪年法。将1月1日定为一年的开始。但一些守旧派不干。他们依然按旧的历法,在4月1日这天互送礼物庆祝新年。后来主张改革的人便嘲弄这些守旧派。他们在4月1日给他们送假礼物,邀请他们参加假聚会。当人们上当受骗时,捉弄他们的人会大叫:四月之愚!慢慢的,这个在4月1日捉弄人的习惯便流传开来。师:(微笑)Verygood!classisover.Bye!SS:Bye,missLi.S1:哈哈,明天我一定要想办法捉弄一下ELLA!我要做一杯可乐,里面放上醋、芥末、辣椒、盐和糖。当ELLA喝下去的时候,哼哼~~~S2:好主意!我要做一个奥利奥。用白牙膏做里面的夹心。当小窦咬上一口后,哈哈!(两人击掌)(其他同学:第二天,同学们都很兴奋。特别是……)S1:ELLA,这杯可乐是给你的。我知道你特别喜欢喝可乐的。ELLA:太谢谢你了,S1。(接过喝一大口——喷)这是什么呀?又辣、又酸、又苦……(奔下台去漱口。S1狂扭、得意、兴奋——自由发挥想象)
二是人才培养方式缺乏新。受到场所、经费及师资力等情况制约人员培训上还是以传统课堂授课主知识讲得多、实操做得少且大多都是蜻蜓点水难以取得良好效果。三是人才开发难度大。我乡实用人才队伍中还有不少人依旧持小农经济思想只足于一时的温饱小富即安主动受新知识、新技能的愿不强。三、下一步工作打算一是打好“人情牌”。借助中秋、国庆等返乡峰节点通过实地走访慰问、座谈了解等方式广泛征求见建议不断深化感情。持续大人才政策宣传力度增强农村青年一返回家乡创业的识。二是打好“发展牌”。持续强同省农业农村厅、科技特派团等单位的沟通借才引智采取集中培训、观摩交流、实践锻炼等方式重点培训农业实用技术、乡村旅游等内容不断升乡村人才队伍带富致富能力。三是打好“暖心牌”。坚决落实好人才工作相关扶持政策支持鼓励乡土人才创办产业合作社、家庭农场等等新型农业经营主题确其起到产业带动和示范作用。
二是人才培养方式缺乏新。受到场所、经费及师资力等情况制约人员培训上还是以传统课堂授课主知识讲得多、实操做得少且大多都是蜻蜓点水难以取得良好效果。三是人才开发难度大。我乡实用人才队伍中还有不少人依旧持小农经济思想只足于一时的温饱小富即安主动受新知识、新技能的愿不强。[&]三、下一步工作打算一是打好“人情牌”。借助中秋、国庆等返乡峰节点通过实地走访慰问、座谈了解等方式广泛征求见建议不断深化感情。持续大人才政策宣传力度增强农村青年一返回家乡创业的识。二是打好“发展牌”。持续强同省农业农村厅、科技特派团等单位的沟通借才引智采取集中培训、观摩交流、实践锻炼等方式重点培训农业实用技术、乡村旅游等内容不断升乡村人才队伍带富致富能力。三是打好“暖心牌”。坚决落实好人才工作相关扶持政策支持鼓励乡土人才创办产业合作社、家庭农场等等新型农业经营主题确其起到产业带动和示范作用。
二、存在的问题在肯定成绩的同时,我们也清醒地认识到我乡人才工作还存在一些不足。一是人才存量不足。我乡地狭人疏,拥有大专及以上文凭的高学历人员占比不高,在外人才返乡意愿不强。二是人才培养方式缺乏新意。受到场所、经费及师资力量等情况制约,人员培训上还是以传统课堂授课为主,知识讲得多、实操做得少,且大多都是蜻蜓点水,难以取得良好效果。三是人才开发难度大。我乡实用人才队伍中还有不少人依旧保持小农经济思想,只满足于一时的温饱,小富即安,主动接受新知识、新技能的意愿不强。三、下一步工作打算一是打好“人情牌”。借助中秋、国庆等返乡高峰节点,通过实地走访慰问、座谈了解等方式,广泛征求意见建议,不断深化感情。持续加大人才政策宣传力度,增强农村青年一代返回家乡创业的意识。
①坚持依法行政,维护公平正义②严格遵循诉讼程序,加强立法③司法过程和结果都要合法、公正④坚持以事实为根据,以法律为准绳A.②④ B.②③ C.③④ D.①②3.疫情防控期间,某地检察院充分发挥检察职能,与公安机关等部门加强协作, 提前介入涉疫案件侦查,切实保障人民群众合法权益,全力维护疫情期间社会稳 定。由此可见 ( )①人民检察院是我国的法律监督机关②公安机关是我国的审判机关③公平正义需要法治的保障④人民检察院接受政府的领导和约束A.①② B.①③ C.②③ D.②④(二) 非选择题4. 探究与分享:结合所学知识,与同学讨论探究,回答下列问题。案例反思:2017 年 4 月 20 日,最高人民法院、中央电视台联合公布 2016 年推动法治进程十大案件评选结果,聂某被宣判无罪案等十大案件入选。1995 年 3 月,石家庄中院一审判处聂某死刑,同时判处赔偿受害人家属丧葬费等计 2000 元。1995 年 4 月 27 日,聂某被执行死刑。2016 年 12 月 2 日,最高人民法 院第二巡回法庭宣告撤销原审判决,改判聂某无罪。2017 年 3 月,聂某家属获 268.13991 万元国家赔偿。思考:如何才能避免这种错案的发生?
10.阅读材料,回答问题。材料一:近年来,公路上经常出现“路怒族” ,只要看到别人抢道、开车慢、不让道等他们就会 骂人,而且骂得很难听,甚至大打出手。材料二:在新型冠状病毒肺炎疫情防控期间,2020年2月1 日贵州省贵阳市的某商场,一位打扮靓 丽的年轻女子要进入商场时不戴口罩,被商场门口执勤的店员劝阻,要求戴上口罩才能进入商场,该 女子不但不听劝告,而是嗤鼻一笑,不以为然。随后就绕开工作人员打算进入商场,4名工作人员随 后上前阻止,该女子竟然要强行闯入商场,甚至对商场工作人员拳脚相加,随后商场工作人员报警。(1) 结合材料说说,情绪受哪些因素的影响?(2) 根据材料谈谈在生活中如何管理愤怒?11.【东东的日记】下面是东东的“微日记”片段,记录着成长的点滴,与你分享。
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
①分别连接OA,OB,OC,OD,OE;②分别在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③顺次连接A′B′,B′C′,C′D′,D′E′,E′A′.五边形A′B′C′D′E′就是所求作的五边形;(3)画法如下:①分别连接AO,BO,CO,DO,EO,FO并延长;②分别在AO,BO,CO,DO,EO,FO的延长线上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③顺次连接A′B′,B′C′,C′D′,D′E′,E′F′,F′A′.六边形A′B′C′D′E′F′就是所求作的六边形.方法总结:(1)画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.(2)画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.(3)若没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心时,画图最简便.三、板书设计
一年之计在于春,再过十一天又到了“惊蛰”。俗话说,“过了惊蛰节,春耕不能歇”。今年已经过了快2个月,意味着一年繁重的工作任务要在10个月内完成。时间如流水,半点不等人。全县各级各部门要抢抓时节,迅速对干部职工进行教育收心,促使他们迅速清心醒脑,找回状态,全身心投入工作,开启一年新的征程。一是用典范收心。春节期间,涌现了一批坚守岗位的典范。当家家户户合家团圆的时候,环卫工人还在寒冷的大街小巷清扫街道;医生护士还在病房里治病救人;公安交警还在风雪中维护交通;水厂电站的工人还在厂房值守供水供电;公交汽运司机们还在往返穿梭运送乘客;还有在各个单位坚守岗位值班的人员……想想他们,我们坐得住、等得起吗?他们高度的责任感和敬业精神,就是我们值得学习的身边典范
大家早上好!今天我国旗下讲话的题目是《传承民族文化,做合格继承人》在九月的晨曦中悄然苏醒,秋意已经布满了床边。凉爽的秋风、金黄的落叶,本周周四我们又将迎来一年一度的中秋佳节。“露从今夜白,月是故乡明”八月十五恰在秋季的中间,故谓之中秋节。中秋之夜,月色皎洁,古人把圆月视为团圆的象征,因此,又称八月十五为“团圆节”。中秋节,也是我国仅次于春节的第二大传统节日。古代帝王有春天祭日,秋天祭月的社制,民家也有中秋祭月之风,到了后来赏月重于祭月,严肃的祭祀变成了轻松的欢娱。中秋赏月的风俗在唐代极盛,许多诗人的名篇中都有咏月的诗句,宋代、明代、清代宫廷和民间的拜月赏月活动更具规模。我国各地至今遗存着许多“拜月坛”、“拜月亭”、“望月楼”的古迹。北京的“月坛”就是明嘉靖年间为皇家祭月修造的。每当中秋月亮升起,于露天设案,将月饼、石榴、西瓜、枣子等瓜果供于桌案上,拜月后,全家人围桌而坐,边吃边谈,共赏明月。
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。