
[活动目标]1、引导幼儿学会处理一些突发事件,知道几个常用的报急电话,并学会拨打报急电话。2、教育幼儿不玩火,增强幼儿的自我保护意识。[活动重点] 学会保护自己,知道几个常用的报急电话。[活动难点] 会正确拨打报急电话。[活动准备] 课件(1)---(3);电话一部;图画 3 幅。[活动过程] 一、播放课件(1),引起幼儿的兴趣。1、一天,亮亮一个人在家,忽然有人来敲门,透过门上的猫眼,他看到一个陌生人,亮亮没开门,这时,陌生人开始撬亮亮家的门。 提问:“这个时候,猜猜看亮亮会怎么做呢?”(个别幼儿回答)2、师:“下面我们来看亮亮是怎么做的。”(拨打110)

活动目标:1.通过找线、玩线等活动,对生活中的各种线条产生兴趣。2.能大胆与同伴交流、表述自己在玩线过程中的发现。3.积极参与线的造型活动,充分体验创造想象的乐趣。活动准备:一、孩子们收集的各种长短不一的线绳:塑料绳、毛线绳、彩线、彩带、皮筋、能弯曲变形的绒线魔术棒,还有家长和孩子一起搓的纸绳等。二、各种形状的彩色底板(泡沫板、KT板等)及双面胶、透明胶、胶水、剪刀、大头针等材料活动过程:一、找线活动师:“这几天,我们小朋友发现线条非常的有趣 ,那除了这些线条,在我们生活中还有哪些有趣的线条,小朋友你们知道吗?”很多小朋友都说不知道,有小朋友建议:“我们可以去找一找呀!”于是,连续几天大家都积极参与到了找线活动中,每天都有孩子来报告自己的新发现:“老师,这是我找到的包装线,是在妈妈给我买的新鞋盒子上找到的。”“你们看!这是我找到的尼龙线,我爸爸说可以织渔网的!”一钒带来的绒线魔术棒更是引发了孩子们极大的兴趣:“老师,一钒带来了一根魔术线,能变图形的!”……(孩子们找线的兴趣有增无减,找来的线绳也越来越多,于是我利用晨间谈话的时间组织孩子们交流自己的发现。)老师:“这几天,大家发现在我们周围有许多许多的线。小朋友,你们找到了什么样的线?” (由于每个孩子都认真参与了找线的过程,他们讲述兴趣很高,讲起来有声有色,很多孩子都把在哪里找到的、和谁一起找到的讲得清清楚楚。在交流过程中还反映出,孩子们在找线过程中对一些线的名称及用途也有了一定程度的了解。)二、玩线活动(在孩子们找来了各种各样的线以后,我发现不仅孩子们相互间的交流没有终止,而且很多孩子已在进行玩线活动,而且非常的投入。为引导孩子们更好的探索,我就为孩子们提供了这一活动空间与时间 。)师:“今天我们就来玩玩我们找到的线,小朋友可以自己选线玩,玩的时候可以试试用不同的方法让它变成有趣的曲线,再讲讲它像什么。”(此活动,为了让孩子们在宽松、自由的氛围中玩线,我允许孩子可以在周围的操作桌上操作、也可以在活动室地板上自由操作。)其间,我注意引导幼儿尝试用不同的方法变出有趣的曲线图,并鼓励幼儿间的相互观察讲述。如当我发现有的孩子变出有趣的图形时,我以惊奇的口吻说:“你变出了什么有趣的东西呀?是怎么变出来的?”“你真能干!让我也来试试!”“你好朋友看到了吗,赶快告诉他!看他有没有你能干!”……

活动目标:1.激发幼儿大胆想象,培养幼儿的想象力。2.鼓励幼儿大胆地讲述自己的奇思异想。3.鼓励幼儿根据自己的意愿进行评价。活动准备:1.录音机、录有三首摇篮曲的磁带。2.多媒体画面:“梦中的南极”,范画:“有趣的梦”。3.绘画用笔、纸。

2、各种废旧材料:如一次性杯子、盘子、废纸、瓶子、盒子、蟹壳等。 3、自制捕捞工具若干。 4、录音机、磁带。 活动过程: 1、创设情景:引起兴趣。 (1) 进场:今天老师要带你们去参观小池塘。(老师带幼儿绕池塘走一圈并围池塘坐下来。) 师:哎呀,这是怎么回事啊,小池塘怎么了呀? 你喜欢这样的池塘吗?这是谁的池塘呀? 闭上眼睛听,是谁来了? (2) 情景表演:老爷爷:唉,别人的池塘里有好多的东西,可是我的池塘里什么都没有?急死我了,我该怎么办呢? (3) 讨论:如何帮助老爷爷? 师:原来这是老爷爷的小池塘啊,那我们帮老爷爷想一想,小池塘里应该有些什么呢? 那我们怎样来帮助老爷爷呢?

2、体验同伴间交流的乐趣活动准备:照片设计思路:在“快乐的假期”活动中,我发现很多幼儿不能用清楚的语言来表达自己的内心,因此我设计了这样一个语言活动,帮助幼儿发展语言表达能力,体验同伴之间语言交流的乐趣。活动流程:故事导入—提问—归纳—幼儿介绍—总结——活动延伸 活动过程:1、 导入(故事“快乐的旅行”)“快乐的旅行”——小白兔和小松鼠是一对很要好的好朋友,小松鼠在暑假里进行了依次非常愉快的旅行,于是小白兔就问小松鼠:“小松鼠小松鼠,你今年暑假和谁一起出去玩了?去什么地方了呀?”小松鼠说:“我跟爸爸妈妈一起去了美丽的大森林旅行了。”“那你都看到了一些什么有趣的东西呀?”小白兔又问。“我看到了美丽的花草,高高的山,还有清清的小溪,真美丽呀”小松鼠回答道。“那你是乘什么交通工具去的呀?”小白兔又问。小松鼠开心地回答道:“我们是乘大象伯伯的汽车去的。”

活动目标: 1、引导幼儿在圆形上联想出多种物体,并通过添画表现其主要特征,激发想象力。 2、能主动参与创编活动,用连贯的语言大胆地表达自己的想法,发展语言,丰富联想。 3、在活动中充分体验创作的快乐,培养幼儿间的合作精神。 活动准备: 1、实物:一个圆圈的图片人手一张。 2、实物投影仪 活动过程: 一、引导幼儿对圆圈进行初步想象。 师:今天老师带来了什么?(一个圈圈) 这个圈圈看上去像什么?(小船、小床、碗……) 那西瓜皮口朝下看上去又像什么?(小伞、屋顶、台灯……)

新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:

1. 小明的脚长23.6厘米,鞋号应是 号。2.小亮的脚长25.1厘米,鞋号应是 号。3.小王选了25号鞋,那么他的脚长约是大于等于 厘米且小于 厘米。小结:刚才同学们都体会到了分组编码使原来繁多,无叙的数据简化、有序。因此分组、编码是整理数据的一种重要的方法,在工商业、科研等活动中有广泛的应用(四)反馈练习课内练习以下是某校七年级南,女生各10名右眼裸视的检测结果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)这组数据是用什么方法获得的?(2)学生右眼视力跟性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?(五). 归纳小结,体味数学快乐通过本节课的学习,你有那些收获?(课堂小结交给学生)数据收集的方法:直接观察、测量、调查、实验、查阅文献资料、使用互连网等。整理数据的方法:分类、排序、分组编码等。(学生可能还会指出鞋码和脚长之间的关系等)

准备:数字卡 棋盘 不同颜色的棋子 旋转六面体 各色旗 扑克牌 玩法:每组5名幼儿,一幅棋盘,每位幼儿一套1——7的扑克牌,每名幼儿持一粒不同颜色的棋子,将各自的棋子放在起点,按照自己的标志次序轮流掷旋转六面体,掷出数字几,就向前走几步,如果走到没有图案的格内,就让下一位幼儿掷旋转六面体;如果走到有图案的格子内,就大声说出图案的数量,并向其他幼儿提问该数字和哪一个数字合起来是8,然后与同伴一起从自己的数字卡中拿出相应的数字卡,拿对的幼儿向前走一步,拿错的幼儿原地不动,看谁先走到终点,谁就在城堡的最底层插一面与自己棋子颜色相同的彩旗。游戏反复进行,谁的彩旗第一个到达城堡的顶端,谁就取得胜利。

通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=43πR3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R-d)3,整个西瓜的体积是43πR3;(2)西瓜瓤与整个西瓜的体积比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R-d)3R3<1,故买大西瓜比买小西瓜合算.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.

【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)

解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学

解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题

【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.

2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)

请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2

1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.

方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则

解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系

若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。