终于,一块巨石立在我们面前。几个威严的大字,赫然入目:老山界。这里是1934年11月,红军长征经过惨烈的湘江之战后,翻越的第一座大山。当年翻越这座山的陆定一,记下了这段难忘的经历。于是,一篇美文《老山界》进入了共和国的中小学课本,激励着一代代国人在人生的道路上奋勇前行。为纪念革命先辈,为宣传红军精神,傍着这座山的东安、新宁、城步三地,都立有老山界的碑石。
四、教学过程 环节一:新课导入(游戏) 游戏规则:教师出示喜怒哀惧的情绪卡片,并让学生作出相应的表情。 教师总结:像同学们刚刚表演出的表情,开心、发怒、悲哀、惧怕都是我们在青春期经常碰到的情绪,除此之外还有哪些情绪类型,它们又有什么特点和作用呢?引出课题《青春的情绪》。
活动重点:能大胆想象剪出不同变化的“春”字 活动难点:初步理解减法的含义 材料与环境创设: 1、幼儿已经学会剪“春”字 2、工具:剪刀、固体胶、手工纸(每人数量不同)方形铅画纸 3、5以内的减法题(人手一份) 活动过程: 一、活动导入: 1、今天,春姑娘给我们带来了许多的纸,看看春姑娘都带来是什么颜色的纸?那绿色代表什么? 2、今天春姑娘又要请你们剪“春”,上次你剪“春”字的时候,“春风”遇到了谁?
根据《中华人民共和国建筑法》、《中华人民共和国合同法》和《建筑工程安全生产管理条例》,本着平等、自愿、公平和诚实信用原则,结合工程实际情况,通过甲乙双方协商一致达成协议(合同)如下:一、承包工程名称及施工日期工程名称:九仓·东庭华府。承包工程: 住宅楼。开工日期: 年 月 日。竣工日期: 年 月 日。二、协议(合同)价款承包工程面积为: ㎡。清包人工费单价为: 元/㎡。清包人工费总价为:(小写) 元(大写) 元。奖励方案见附件。三、工程承包方式承包方式:清包人工费,经济独立核算承包。执行各种施工规程、规范和业主方、甲方的现场指示。以现场样板、核准的图片为准。属于乙方施工范围而未按规范要求施工,甲方将扣除相应款项。
A.大力深化大数据、人工智能等研发应用B.高举新时代改革开放旗帜,继续全面深化改革、全面扩大开放C.加强国际交流与合作,培育竞争新优势D.建立更加公平、更可持续的社会保障制度 2、发展是解决我国一切问题的基础和关键。全面建设社会主义现代化国家,必须始终抓好发展 这个基础和关键。中国积极谋求发展,就必须 ( )①引领、主导全球规则的制定②要加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局③掌握国际竞争主动权④积极寻求新的经济增长点A. ①②③ B.①②④ C.①③④ D.②③④3、“中国制造2025”构想的提出,对于中国传统制造业的转型升级影响深远。新一代信息技术 和传统工业的深度融合已成为中国新一轮制造发展制高点,我们要把智能制造作为中国制造未 来的主攻方向,实现由“中国制造”向“中国创造”“中国智造”转型。这有利于 ( )①促进我国经济实现由实体经济向虚拟经济转变②通过新技术将传统产业打造为高新技术产业③推动传统产业优化升级,从而进一步提升我国在全球分工中的地位④催生新兴产业,形成新的经济增长点
(四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,结合信息技术下的思政课与信息 技术的深度有效融合,不仅完成了培育学生课程核心素养提高政治认同的目标,而且有效 的激发了学生的学习兴趣。作业以学生的“微型讨论会”为主要情境,设置了三项任务,层层 递进,螺旋式上升。作业以填写“活动记录”的形式呈现。教师从“掌握必备知识, 理论联系实 际 ”“培养核心素养,提高政治认同”等 5 个维度对作业进行评价,以“优秀”“良好” “合格”三个等级呈现。学生通过“微型讨论会”的方式,畅谈自己对中国在国际社会中的 地位和作用及相关外交政策的了解,通过该作业设计,教师可以引导学生关注国家和世界 局势,树立正确的人生观,世界观和价值观。 以增强学生的政治认同和责任意识。
8. 2022 年,俄乌冲突以来,美方不断泛化国家安全概念,滥用出口管制措施, 多次以所谓“人权”等为由,对中国企业无理打压,严重破坏国际经贸规则。 同时美国不顾中方多次警告,将航母驶入南海进行挑衅,美国国会操弄“台湾地图牌” 。面对美方的无端打压和干涉,我国应该 ( )A.谦让机遇,合作共赢,与美国共发展B.抓住机遇,迎接挑战,积极谋求发展C.集中力量,增强实力,掌控世界趋势D.主动迎击,不畏强权,巩固霸主地位9. 中华诗词浓缩了中华文化的精华,经过岁月的沉淀仍然闪烁着时代的光芒。 从下列经典诗句中得到的启示,你认为不正确的是 ( )A.“万物并育而不相害,道并行而不相悖”—在国际交往中我国要坚持合作、共赢的理念,做到互信互利 B.“国虽大,好战必亡;天下虽平,忘战必亡”— 中国要屹立于世界民族之林,必须通过战争树立国际地位C.“天与不取,反受其咎;时至不行,反受其殃”—机遇稍纵即逝,我们要抓住机遇,勇于创新,追求发展D.“同心掬得满庭芳”—各族人民要铸牢中华民族共同体意识,手足相亲、守望相助10.从漫画“新四大发明”中,下列认识和理解正确的有 ( )①我们要培育壮大经济发展新动能②我国把提升发展质量放在首位③中国决定着世界经济发展的趋势④中国与世界各国共享发展成果
【甲】环滁皆山也。其西南诸峰,林壑尤美,望之蔚然而深秀者,琅琊也。山行六七里,渐闻水声潺潺而泻出于两峰之间者,酿泉也。峰回路转,有亭翼然临于泉上者,醉翁亭也。作亭者谁?山之僧智仙也。名之者谁?太守自谓也。太守与客来饮于此,饮少辄醉,而年又最高,故自号曰醉翁也。醉翁之意不在酒,在乎山水之间也。山水之乐,得之心而寓之酒也。
三是清理处置“两非”“两资”,积极助力提质增效。认真落实集团公司关于加快清理非优势业务和低效无效资产的工作部署,组织集团各所属企业深入开展调查摸底,分门别类建立台账,逐笔逐项明确处置目标、处置责任、处置流程、处置思路和措施,本着先易后难的原则,分批分类推进“两非”“两资”处置工作,力争年内取得明显进展。同时,探索建立清理处置低效无效资产的工作机制,包括汇报沟通机制、集体研判机制、督导检查机制、动态销号机制,以高效机制推动低效无效资产逐步出清、确保资产质量稳步提升。四是抓紧开展“两金”压降,推动提升经济效益。对照年度经营目标责任书确定的考核目标,聚焦应收账款和存货两大领域,统筹运用市场、信用、法治等手段,一体推进旧欠清收和“两金压控”两项重点,全面清理处置应收账款、其他应收款、预付账款、存货,进一步盘活资产、回笼资金,降低财务风险,提高资产质量,增加经济效益,并着眼集团长远高质量发展,全面梳理自查制度、机制、流程等方面的短板和不足,建立健全压控“两金”的长效机制,持续提升造血能力,推动全集团持续稳健高质量发展。
三是清理处置“两非”“两资”,积极助力提质增效。认真落实集团公司关于加快清理非优势业务和低效无效资产的工作部署,组织集团各所属企业深入开展调查摸底,分门别类建立台账,逐笔逐项明确处置目标、处置责任、处置流程、处置思路和措施,本着先易后难的原则,分批分类推进“两非”“两资”处置工作,力争年内取得明显进展。同时,探索建立清理处置低效无效资产的工作机制,包括汇报沟通机制、集体研判机制、督导检查机制、动态销号机制,以高效机制推动低效无效资产逐步出清、确保资产质量稳步提升。四是抓紧开展“两金”压降,推动提升经济效益。对照年度经营目标责任书确定的考核目标,聚焦应收账款和存货两大领域,统筹运用市场、信用、法治等手段,一体推进旧欠清收和“两金压控”两项重点,全面清理处置应收账款、其他应收款、预付账款、存货,进一步盘活资产、回笼资金,降低财务风险,提高资产质量,增加经济效益,并着眼集团长远高质量发展,全面梳理自查制度、机制、流程等方面的短板和不足,建立健全压控“两金”的长效机制,持续提升造血能力,推动全集团持续稳健高质量发展。
五是基层减负减压不松劲。坚持少开会、开短会、发短文、讲短话、简办事,注重提升会议与公文质量和效果,提振干部精神风貌、纪律意识和工作作风,提高行政效率。修订公司会议管理办法,每周五统筹合理安排公司周会议计划,采取合并、套开的方式严格压缩会议数量和时间;充分利用现代通信和技术手段召开视频会议,避免层层开会现象;下发严肃会议纪律、规范视频会议通知,严肃会风会纪。三、存在的主要问题及解决措施部门各项政务性、事务性工作繁杂,深入思考不够,存在“兵来将挡、水来土掩”的惯性思维,今年争取积极发挥综合部参与政务、管理事务、搞好服务的职能作用,力争工作年年有进步,部门职工之间团结协作,把综合部建设成学习型、服务型、素质型、效率型部门。四、下半年工作计划
三、宗教改革:1、背景:(1)文艺复兴的影响。文艺复兴中,人文主义学者尽管对宗教保持较为温和的态度,但其以人为中心的思想极大地冲击了天主教的精神独裁,天主教的权威日益受到人们的怀疑。(2)天主教会对欧洲尤其是德意志的压榨。中世纪的天主教会对人民进行严密的精神统治,基督教信仰的核心是“原罪”和“灵魂救赎”,即人生下来就有罪,只有信仰上帝,跟随耶稣才能得救。就“灵魂救赎”而言,最初强调的是个人信仰的作用,后来,神学家们又加上了种种繁杂的宗教礼仪,而且必须得到神职人员的帮助,灵魂才能得救。在经济上,天主教会还是最大的封建主,占有大量的土地,并征收什一税,对各国人民大肆搜刮。罗马教廷每年从德意志搜刮的财富达30万古尔登(货币单位),相当于“神圣罗马帝国”皇帝每年税收额的20倍。德意志也成了被教会榨取最严重的地区,素有“教皇的乳牛”之称。
作为备课组长,必须认识到教师的劳动,既是个体的创造性努力,需要发挥个人的才智,又要依靠集体的合作,需要群策群力。开学初始,我会早早制定切实可行的备课组活动计划,教学进度计划,从内容的确定、人员的安排、活动形式的组织等方面都进行了详细的安排。所有工作的安排尽量做到公平公正,如果某位老师做某项工作有困难,我会及时调整计划安排。在计划实施过程中,我会采取随机听课,检查教师批改作业情况等方式,严格监督组内成员是否按照计划执行。
老师、同学们:大家好!我是504班的张xx,今天我国旗下发言的题目是《安全记心间,快乐过冬天》。随着气温的下降,寒冷的冬季又来临了。由于天气寒冷,气候干燥,是火灾事故、交通事故和人身伤害事故的多发季节。为了确保同学们的人身安全,防止各类事故的发生,过一个健康安全的冬天,请同学们注意以下几点:一、交通安全冬季有霜冻,路面较滑,有时还有大雾天气,加上冷空气使人体关节的灵活性较差,反应也相对缓慢,平时在上、下学路上也要注意交通安全。步行走人行道,在没有人行道的地方靠右边行走;不抢机动车道;通过路口或者横过马路时要减速慢行。学生不要骑车上学;不要到河边玩耍;更不能到结冰的水塘、河沟里踩冰玩!二、校内安全在校内上体育课、课间活动时也要注意安全,不做危险的游戏,不追逐打闹,有冰霜的地方要绕道行走。打扫卫生时一般不使用湿拖把,清洁用水不滴撒在路面上,更不能随意乱倒。上下楼梯及跑步锻炼时不将手插在口袋里,不推挤其他同学。
<Good morning> T:Look!今天我们班来了很多老师,我们一起跟老师打招呼吧! S:Goodmorning Miss! T:Follow mecry stop ! Follow me laugh stop ! Follow me eat stop ! Follow me stand up ! Follow me sit down !幼儿跟老师做 T:Children,look ,what’s this ? S:A T:Yes! Verygood!Follow me A A ae ae ae S:A A ae aeae T:Apple S:Apple T: A A ae aeae ant S: A A ae aeae ant T: A A ae aeae cat S: A A ae aeae cat T: A A ae aeae hat S: A A ae aeae hat
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。