活动目标1 、教幼儿学会用积极的态度去面对生活,学会与同伴友好相处。 2 、教幼儿在日常生活中学会思考解决问题的方法,知道高兴快乐有利于身体健康。 渗透目标培养幼儿的自我控制能力,为养成活泼开朗的性格奠定基础。 活动准备1、多媒体《别来烦我》 2、微笑卡,音乐磁带,录音机 3、区域活动准备工作
准备: 1、经验准备:幼儿解吸烟对人体健康的危害。 2、材料准备: 教师:棉花、香烟、瓶子; 幼儿:大型积木,剪刀,纸,食品包装,记号笔,禁烟标志等。 过程: 一、通过做实验,感受空气的重要性。 1、捏紧鼻子,闭紧嘴巴,说一说有什么感觉?(不能呼吸感到非常的难受。) 2、深呼吸一次,现在感到怎么样?(感受空气对人的重要性。) 二、感知香烟对人类的危害。 1
活动准备: 1、每人镜子一面,调味品一份(包括酸、甜、苦、辣、咸),吸管一根。 2、电脑、投影仪、多媒体课件。 活动过程: 导入,引出主题 1、教师和幼儿一起玩舌发出声音。 2、提问:是谁帮助我们发出这些有趣的声音? 认识舌头各部分的名称及部位 1、师:对了,是我们的舌头,你有没有仔细的观察过它?今天老师为每个小朋友准备了一面镜子,请你仔细地观察一下自己的舌头,看看它的上面、下面有什么。 2、幼儿边观察边发言。 3、教师把自己的手当作舌头演示,幼儿认识各部分名称:舌头后面连着喉咙的部分叫“舌根”,舌根的前面部分叫“舌体”,舌体的最前面叫“舌尖”,舌体的上面叫“舌背”,舌背上有舌乳头、舌苔,舌体的下面叫“舌腹”,舌腹上有舌系带、血管和突起。
活动3,估老虎头和枫叶的面积。图1是进一步巩固转化的方法;图二是灵活变式。学生体验到在实际生活中不只可以将不规则图形转化成一个基本图形,也可转化成几个基本图形再求面积。学生的思想层次得到提升。活动4,估计三个圆的面积。旨在体会面积单位越小,估计的面积越接近精确值。为学生今后会学习到的“密铺”知识打下基础。活动5,小组合作估手掌的面积。这个活动是对这节课所学知识的综合运用。如何估最简便?从画手掌轮廓到选择合适的方法估计,综合训练学生解决数学问题的能力。五个活动层层递进、层层深入,学生逐步体会到用转化成基本图形的方法估计不规则图形的面积的优越性,并能选择合适的转化方法解决实际问题,从而突破教学重难点。
教学内容:统一长度单位教材分析:通过量一量说一说想一想等活动切实感受到统一长度单位的必要性及其对生活的重要意义。学情分析:在上册“比一比”中学了比较物体长短的基础上学习的。尽管学生有这方面的经验和基础,但是长度单位的操作和应用是多种知识的综合,对小孩来说还是比较难的,在教学中应根据学生特点,注重实践性,培养观察力。教学目标:1、让学生通过量一量、说一说的活动,体验统一长度单位的过程,感受统一长度单位的必要性,为厘米、米的学习打下基础。2、让学生用不同实物作标准进行测量,培养学生的动手、思考能力,以及合作、估测的意识。3、通过不同的测量活动,让学生体验测量活动的过程,感受学习与生活的联系,体验学习数学的乐趣。
陶行知先生说:“千教万教,教人求真;千学万学,学做真人。”一中的学生要勇于做真人,获真知,求真理。求真的道路很艰辛,学做真人很艰难。生活在大千世界,面对着纷繁复杂、日新月异的形势,我们的行为无时无刻不在接受着检阅,我们的心灵时时刻刻在接受着拷问。真的对立面是假,与人对话和行文中的假、大、空,令人厌烦;产品的假、冒、伪、劣,令人不齿;文艺作品的抄袭剽窃,让人生愤;学术论文的造假不绝于耳……这些人间乱象、假象,深刻反映了人性的丑恶肮脏。如何不被乱花迷你双眼,污秽玷污心灵,永葆内心纯净,追求至善至美的人生,的确是极其艰辛的征途。虽然漫漫路途,荆棘丛生,但是心若向阳,何惧远方?希望你们勇敢地走出小我世界,追求大我人生。不要深陷自我小圈圈而孤芳自赏,而要勇于追求高贵的生活方式和精神世界。
今天,我很高兴能够参加这次老干部座谈会,与各位老领导坐在一起,共谋*的发展大计。首先,我谨代表区委、区政府向一直以来关心、支持全区各项事业发展的各位老领导、老同志表示衷心的感谢。借此机会,我代表区委、区政府向各位老领导、老同志简要通报一下*年全区经济社会发展情况,还请各位老领导多提宝贵意见。一、突出项目支撑,注重产业发展质量,经济发展动能进一步增强1.招商水平和项目质量不断提升。一是加大招商引资力度。“走出去”拜访企业*家,“请进来”企业*家,长城汽车小镇、华润啤酒小镇、阳光保险康养综合体等重大项目进展顺利。签约注册项目*个,引进国内实际到位资金*亿元。二是全力推进项目建设。冲伟佳业家居、万鑫宝利新材料等*个亿元以上优质项目开工建设,总投资*亿元;尚品无纺布、嘉碳新材料等*个前景好的产业项目竣工投产,总投资*亿元;此外,东北物流基地、烟草物流园等一批高质量续建项目顺利推进。三是扎实做好项目服务。全面落实“项目管家”制度,对*个重点项目精准帮扶。全面核查解决招商引资承诺不兑现问题,促成*个停工项目复工。认真贯彻落实支持民营企业发展的各项政策,新注册中小企业*户。
要抓好已出台的助企纾困政策的落实,再研究推出一批惠企助企政策,帮助市场主体渡过难关。在复工复产方面,继续执行满负荷生产企业财政奖励政策,帮助解决复工复产中的共性困难和个性问题,支持企业在做好疫情防控的基础上,应开尽开、达产增产。在降低成本方面,再延长承租国有房产的中小微企业、个体工商户房租减免政策,继续执行企业欠费不停供政策,延长补交水、电、气欠费期限。在减税降费方面,顶格执行六税两费减免政策,将适用主体范围扩大至全部小微小型微利企业、个体工商户,做到增值税留抵退税、申请即办,确保6月底前小微企业全部退还到位,推动特困行业缓交养老保险费等政策落地。在金融支持方面,帮助受困企业修复信用,开设融资绿色通道,用好再贷款、再贴现、普惠小微贷款支持工具等,保障资金链安全,积极开展地方政策性金融业务,出台风险补偿、特色监管等支持政策,组织银企对接活动,为科创企业提供低利率弱担保长周期的金融产品,加快推动“小升规、规改股、股上市”及“专精特新”企业的培育。
今天这次座谈会,主要是分析当前财税形势,听取大家意见建议,细化分解任务目标,压紧压实各项工作措施,确保完成全年财税任务。结合大家的发言和平时调度掌握的情况,就做好全年的财税工作,讲几点意见。一要分解责任目标。各镇街、各部门要按照目标增幅,把账算清算透,看看每个月需要完成多少,再看看哪些企业、哪些方面能完成多少,拉出单子,认真对照,把任务逐一分解落实到税种、到企业、到征收单位、到时间节点,安排专人,跟踪督导,确保每笔税款都能够及时足额入库。二要强化征收措施。要突出抓好主体税种和重点税源的征管,对骨干税源、纳税大户实行重点监控、直接调度,对生产经营状况、收入状况与纳税不符的规上企业,进行重点监控,确保其依法及时足额纳税。要进一步强化科技治税措施,抓好中小企业尤其是商贸流通行业的税收征管,多管齐下,多措并举,严防税源流失。
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程
从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.2.相信学生并为学生提供充分展示自己的机会本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.3.注意改进的方面本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。