2、某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3、y是x的反比例函数,下表给出了x与y的一些值: (1)写出这个反比例函数的表达式;(2)根据表达式完成上表。教师巡视个别辅导,学生完毕教师给予评估肯定。II巩固练习:限时完成课本“随堂练习”1-2题。教师并给予指导。七、总结、提高。(结合板书小结)今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,k≠0)同时要注意几点::①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应 的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
一、指导思想 深入贯彻落实全教会精神,进一步贯彻、落实国务院《学校卫生工作条例》和《中学生健康教育基本要求》,完善学校各项卫生设施及监督措施,加强学校环境建设,充分发挥校园环境的育人功能,增强学生卫生、保健意识,牢固树立“健康第一‘的学校指导思想,积极营造健康、优美、和谐的校园环境,开展丰富多彩的文体活动,不断提高学生身心素质的健康水平。
其一,心理与环境的统一性。正常的心理活动,在资料和形式上与客观环境具有一致性。 其二,心理与行为的统一性。这是指个体的心理与其行为是一个完整、统一和协调一致的过程。 其三、人格的稳定性。人格是个体在长期生活经历过程中构成的独特个性心理特征的具体体现。
欣赏完自己的表演后,接下来同学们的吉他独奏表演、歌曲合唱、相声表演更加让我感遭到了集体的魅力,多姿多彩的节目表演,展现了同学们多种不同的才艺,表现了当代大学生风姿多彩的才能,被气球和彩带装潢的教室正是由于地方不大,才更显示出了一家人的暖和。假如说第一次团日活动像一颗火炉暖和了交运3班这个大家庭,那末第二、第三次团日活动就是一股生命的气力把这个大家庭由出色一步步拥向辉煌。在集体参观伊利团体的第二次团日活动中通过了解伊利团体的历史沿革、生产范围还有当前其所面临的国际国内情势,让我感遭到中国企业的勃勃生机,特别是那叠放成品牛奶的铁架:真是一座牛奶大厦。
脚踏实地,坚持不懈,才能登上峰顶。踏踏实实的走好每一步,留下的足迹虽然会渐渐消失,但是却教会了我们学会积累。无论做什么事情,态度最重要。有时候我们真心的为每一件事情做好了腕足的准备,个人简历但却以失败告终,可是我们不会气馁,我们会逐渐从中获得爬起来的勇气。虽然失败了,却离成功更近了。我们青年志愿者在工作中,也有拼成失败痛楚的时候,但是我们需要做的,是整理好心理笔记,端正态度。只要一直保持着良好的态度,坚持努力不放弃,我们会慢慢成长,成熟,直至成为一个耀眼的星团。切实的为人们做实事,这便让人们心中温存了热,温存了让人快乐,让人感激的热。
我是在学校发出倡议后主动报名的,后来经过学校的开会培训后,于4月11日正式上岗。那天正好是三年级第一批家长义工第一天上岗值勤。我知道家长义工意味着责任和义务,于是提前四五十分钟就到校了。之前因为经常参加家长讲堂活动,女儿的同学们都认识我了,我也能叫出大部分孩子的名字了。所以一进女儿教室,孩子们就热情的围住我,有礼貌问好的,有好奇问东问西的。我摸摸孩子们的头,微笑着边回答问题,边让小鸟一样叽叽喳喳的他们安静下来,让他们拿出书开始早读。然后我到年纪组长杨老师那里领了红袖章签了名后,听她交代了一些注意事项,就兴奋的上岗了。
一、帮忙我成长,提高了我的自信心,意志本事。在拓展的真人CS中,对于女孩而言,拿着从来没有玩弄枪,在极其不熟悉的,恶劣的训练场地中,我们努力按照教练宣布的游戏规则进行。第一局结束,10号,战绩3战损2。自信心大增。所以在接下来的第二局,在已经被树枝伤到的情景下,我的战绩继续增加。意志力得到了锻炼。 二、拓展项目中培养合作意识,改善自我人际关系。在拓展训练---穿电网项目中,有80%的时间都是处在团队内部的相互交流和沟通中。经过大家共同的努力,我们在指定的时间里成功穿越。也经过这次的拓展,我和交大网络校区的教师们更加的熟悉。因为我们以往是“CS战队”的战友们。
总体来说这次的课外阅读让我逐步的提高自己很多知识,因为对历史感兴趣了,所以读了一些与历史相关的书籍,这些知识填充了我很多丰富自己的知识层面,我认为了解这些肯定是没错的,至少我了解了我们的过去,了解了我们这个民族的一些兴衰,给我的感觉真的非常的好,我也希望能够把这些做好,这样的方式真的能够让我获取很多知识,无论是在什么阶段我都会继续保持下去,现在所经历,所遇见的都将会是我未来的发展自己的动力,读书的感觉是好的,不管是读什么书,我们丰富了自己的知识层面,我清楚的意识到了这些,我也会让自己逐步的去培养自己这方面能力,提高阅读能力。
俗话说:“严师出高徒。”虽然教官们对每一个动作都有严格的要求,但是我们有的动作做的还不规范,不到位。这就要求我们必须严格要求,刻苦练习,争取把每一个动作都做好,用实际行动回报教官们的一片苦心。 不管前方是风雨,还是险滩,我们将与教官们走完这精彩的_天。让岁月珍藏一份经典的画卷。保存一份完美的回忆。我们坚信_天后的我们将会更完美。让我们用心去呼唤,让暴风雨来得更猛烈些吧!我们已经作了最充分的准备,用自己坚强的意志去挑战,去适应,去完美这_天的精彩而又刺激,艰苦而又快乐的生活。
教材简析 《灰雀》这篇课文记叙了列宁在莫斯科郊外养病期间爱护灰雀的故事,反映了列宁爱鸟,更爱诚实的孩子。 全文共13个自然段。第1自然段讲列宁在郊外养病期间,每天都到公园散步,他非常喜欢公园里那:只灰雀。第2—10自然段讲有一天,列宁发现那只胸脯深红的灰雀不见,以为它冻死了,感到很惋惜。小男孩不敢告诉列宁灰雀没有死,只是坚定地说,灰雀会飞回来的。第11~13自然段讲第二天,列宁果然又看见了那只灰雀,但他没有再问那个男孩,因为他已经知道男孩是诚实的。 课文以人物对话为主线,既写出了列宁对孩子的教育过程,又写了小男孩心理认识过程。人物的内心活动外化为语言,二者相互交错,推动情节发展,并有机地融合在一起。
(1)第一环节:讲解活动主题,提出问题讨论 1.让学生们说一说自己有哪些习惯。 2.老师根据学生发言,对习惯进行简单的分类,如分为生活习惯和学习习惯,好的习惯和坏的习惯等等,并在黑板上进行板书,大纲式列出来。 3.老师进行归纳小结:习惯是一种态度,同学们说的习惯中,有生活习惯、有学习习惯,有些是好的习惯,有的是坏的习惯。其实从我们出生的那一天,我们就开始有意无意地养成习惯......比如今天,当我们走进课堂,其实就已经开始了“好好学习”这个习惯养成的第一步....
(1)第一环节:讲解活动主题,提出问题讨论 1.让学生们说一说自己有哪些习惯。 2.老师根据学生发言,对习惯进行简单的分类,如分为生活习惯和学习习惯,好的习惯和坏的习惯等等,并在黑板上进行板书,大纲式列出来。 3.老师进行归纳小结:习惯是一种态度,同学们说的习惯中,有生活习惯、有学习习惯,有些是好的习惯,有的是坏的习惯。其实从我们出生的那一天,我们就开始有意无意地养成习惯......比如今天,当我们走进课堂,其实就已经开始了“好好学习”这个习惯养成的第一步....
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。