解决了以上三个问题以后,我再让学生先独立将四座山的高度按照从小到大的顺序排列出来,这时,我会适当地引导学生阅读前面三个问题的解决过程,并梳理进行多位数比较的思路:先按数位比,再从高位看起。(三)分层次练习,巩固新知识在学生掌握了上述比较大数的方法以后,我将让学生运用所学的新知识,去解决”练一练”中的第1,2,5题。其中第1,2题是为了巩固“万以内的数的比较方法”,“能用符号表示万以内数的大小”这两个知识点;而第五题则是为了鼓励学生在新的情景中,进行数的大小比较。(四)课程总结这节课,同学们收获了什么?学生一定会很轻易地将上面四座山进行比较的规律说出来的。这时,我会引导学生回顾全文第四,板书设计(略)本节课,我将用最简单的文字体现重难点,便于学生理解。我的说课到此结束,谢谢大家!
二、说教学目标:1、探索有余数除法的试商方法,让学生再探索、练习中积累有余数除法的试商经验。2、运用有余数除法的有关知识,联系生活实际解决简单的问题,体验成功的喜悦。三、说教学重难点:1、让学生经历试商的过程,积累试商的经验,逐步达到熟练程度。2、使学生理解和掌握有余数除法的试商方法。体会余数要比除数小。四、说教学方法:探究、自主合作交流。五、说教具:课件、六、说教学过程:由于二年级学生,他们活泼好动,争强好胜,想象丰富,求知欲旺盛;学习责任感不断增强,但学习往往从兴趣出发;他们注意力不稳定、不持久,无意注意占主导地位,缺乏独立思考能力,容易受外界事物的干扰。因此,教学中培养学生参与数学活动的兴趣,培养良好的学习习惯,帮助他们逐步树立自信、自尊、自律等积极心态,是他们通过思考,提高自我认知能力,自我控制能力,这是提高课堂教学效益的基础,也是教师需努力和强化之处。下面我将详细说说我的教学过程:
一、说教学内容及目标。《买电器》是北师大版二年级数学下册第六单元“加与减(一)”的一课时。本科教材通过创设学生熟悉的买电器的生活情境,请学生提出相关的数学问题,学习整百、整十数相加减的口算。本节课是在学生掌握了100以内加减法及万以内数的认识的基础上进行的,学好本节课为今后进一步学习整数加减法打下了坚实的基础。对学生来说,对各种电器非常熟悉,并且有逛家电商场的经历,能根据情境提出相应的加减法问题。孩子们能正确迅速地口算20以内的加减法,部分学生能口算整百、整十数的加减法,但对于算理的理解比较欠缺。为此我确定以下教学目标及重难点。教学目标:1、引导学生探索并掌握整十数、整百的加减计算方法,经历与他人交流计算方法的过程,并能正确计算。2、结合具体情境,提出用整十数、整百数解决的问题,发展提出问题和解决问题的意识和能力。
二、学情分析对于学生来说,在认识角之前,已经具备了有关角的感性经验。但是,低年级学生的认知规律是以具体的形象思维为主,抽象思维能力较低。这部分内容对于二年级学生来说比较抽象,接受起来较为困难。为了帮助学生更好的认识角,形成角的表象。我设计了一些贴近学生生活的数学活动,让孩子在实践活动中经过独立思考,合作探究去认识角,发现角,从而感受到生活中处处有角。三、教学目标及重难点依据《课标》的要求和教材的特点,结合学生的生活实际及年龄特征,我确定了如下的教学目标:1、结合生活情境,感受生活中处处有角,体会数学与生活的密切联系。2、通过摸一摸、找一找、搭一搭、画一画、比一比等活动让学生直观地认识角,感受角的大小。
(1)课件显示搭正方形的画面以及问题“4根小棒搭一个正方形,13根小棒可以搭多少个正方形,还剩几根?”。(2)组织小组讨论:有13根小棒,能搭几个正方形?请每个同学利用学具摆一摆,再依据上节课学习的除法算式,小组内讨论用竖式怎样表示。【设计意图:通过摆小棒搭正方形和自主探究等开发学生思维,促进学生多层次思考,培养孩子良好的思维方式,推动学生积极思考,逐步开阔学生解决问题的思路,培养学生横向思维能力。】(3)进行全班交流。指名回答;引导学生探究竖式各数表示的意思及单位名称的写法,并进一步认识余数。课件显示搭小棒的过程及横式和竖式:13÷4=3(个)……1(根)答:可以搭3个正方形,还剩1根。引导学生认识竖式中:“13”表示把13根小棒拿去分,“4”表示摆一个正方形需要4根小棒,“3”表示可以摆3个正方形(强调单位“个”),“12”表示3个正方形共12根(4×3=12)。“1”表示摆了3个后还剩下1根(强调单位:“根”),说明“1”是这个竖式的余数,这1根不能再继续往下分了。
3、教学目标:(1)能灵活运用有余数除法的有关知识解决生活中简单的实际问题,培养应用意识。(2)在合作交流中勇于表达自己的想法,学会倾听别人的意见。(3)通过合理解决实际问题体验成功的喜悦。4、教学重点:解决有关“有余数除法问题”的简单实际问题。5、教学难点:灵活处理有余数除法中需要根据实际情况而定的对余数的“取”与“舍”的问题,即对于商的“进1法”和“去尾法”。【教法学法】教法:整个教学过程,以学生为主,教师只是学生学习的服务者,知识的引路人,在教学设计中,正确理解新教材,抓住新教材特点,进行有创造性地使用教材,通过师生互动教学,引导学生运用动手实践、自主探索和合作交流等学习方式,提高参与探索的欲望。学法:1、指导“探索实践”。让学生在探索、研究活动中感悟根据实际情况而定的对于商的“进1法”和“去尾法”。2、引导“思”鼓励“问”。让学生在探究活动中勇于思考,大胆质疑,不断创新。
(一)课标要求在 2022 年课标中,要求学生能够与他人进行有效沟通。树立正确的合作与 竞争观念, 真诚、友善, 具有互助精神。 引导学生了解积极交往的意义, 树立主 动交往意识, 积极树立以同情、关爱、道义为基础的友谊。引导学生在交往中积 极践行真诚、友善和互助精神, 提高交往能力,学会处理与自我、他人和集体、 国家和社会等方面关系, 营造良好和谐的人际关系。 了解青春期闭锁心理现象及 危害, 积极与同学、朋友和成人交往, 体会交往与友谊对生命成长的意义。学会 用恰当的方式与同龄人交往, 建立同学间的真诚友谊, 正确认识异性同学之间的 交往与友谊, 把握原则与尺度。知道每个人在人格和法律地位上都是平等的, 做 到平等待人, 不凌弱欺生, 不以家境、身体、智能、性别等方面的差异而自傲或 自卑, 不歧视他人, 富有正义感。合理利用互联网等传播媒介, 初步养成积极的 媒介批评能力,学会理性利用现代媒介参与社会公共生活。
一、抓住特点说教材《小英雄雨来(节选)》部编版小学语文四年级下册第六单元的讲读课文,课文节选自作家管桦写的同名中篇小说,讲的是抗日战争时期,晋察冀边区的少年雨来,聪明勇敢,游泳本领高强,为了掩护革命干部,机智地同敌人作斗争的故事。我在解读本文时特别关注了三点:一是故事情节跌宕起伏,将一位热爱祖国、不畏强敌的少年英雄塑造的活灵活现。二是文章中有些语句含义比较深刻,三是课文分六部分,每部分用空行隔开,便于训练学生的归纳概括能力。教学目标:1.自主学习字词,会认“晋、扭”等17个生字,会写“晋、炕”等15个生字,理解字义,识记字形。2.体会雨来的英雄品质,激发爱国情感。3.品味课文如何进行环境描写,体会这样描写的好处。
1.自学文本出示书中情境图:有21架飞机要参加飞行表演,怎样飞呢?想请同学们帮忙设计编组方案,下面小组同学合作,用学具摆一摆,设计出自己的编组方案,看哪个小组设计的方案最多?学生小组合作,边摆学具边说方案。2.交流研讨哪组想到前面来汇报一下你们制定的飞行方案?(不必强调平均分,如有小组同学说出每组有7(3)架,可以分成3(7)组,或每7(3)架一组,可以分成3(7)组,老师在给予肯定的同时可以问其它小组摆法一样吗?之后板书算式:21÷7=3,21÷3=7。如果学生没说出平均分,老师可引导说:有时表演的每组也可同样多)
这篇国旗下的讲话演讲稿:学校升旗仪式演讲稿是由整理提供的,请大家参考!国旗下的讲话演讲稿:学校升旗仪式演讲稿学校是培育人才的摇篮,是祖国栋梁成长的地方,是塑造美好心灵的净土。作为我们老师和学生,每个人的日常生活、学习都是由一件件小事构成的,我们不能对这些不起眼的小事敷衍而行或轻视懈怠。请记住:关注细节,生活无小事。所有成功者,无不是从小事做起,无不是关注自己身边的每一个细节。让我们看看,在校园生活中,我们有好多好多的小事,你做到了吗?比如:踏着朝阳迈进学校,你是否检查了自己衣冠整、标志齐、手脸净呢?跨进学校,你是否见到了纸屑、果皮、食品袋,捡一捡呢?课间十分钟,你是否做到了不追逐打闹,轻声慢步过走廊,上下楼道靠右行呢?你,爱护公用设施、关爱生命、团结同学、礼貌待人、乐于助人、走人行道过斑马线、认真听讲、多快好省地完成作业、勇于创新吗?踏着夕阳,你是否想过我今天收获了多少,有什么快乐吗?等等。这些小小事都需要我们具有一种锲而不舍的精神,一种支持到底的信念,一种脚踏实地的务实态度,一种自动自发的责任心,一种没有任何借口的行为准则。只有这样,我们才会成功,才会胜利,才会成为强者,才会屹立于不败之地。
开学初,为充分发挥各功能室的作用,音乐、美术、科学、物理、化学教研组拟定各功能室的使用安排,教务处不定期抽查功能室使用情况。同时各功能室建立规范的使用记录、活动记录、损坏维修、报损等记录,实验室有实验教学计划、实验进度安排及分组(演示)实验通知单,分组实验报告单,图书室有借阅和阅览记录等原始记录。8.规范学籍管理严格按上级文件要求进行学籍管理,特别是省外学生的转入转出,规范学籍转入、转出、休学、复学等工作。另外,学校作为XX教育集团领头羊,还成功承办了多项区级、教育集团活动,成绩显著。二、待提升的工作1.校本课程因各类特殊原因,本学期校本课程尚未开足开齐,部分外聘教师的课程教学效果有待提高,下学期将提前谋划,精准落实。
我是快乐的挑战者,我试试,我能行!遇困难,我不怕!来挑战,会选择!我挑战,我成功!出示任务:全班挑战诵读儿歌。反馈指导:1.学生一人挑战诵读儿歌。2.全班同学挑战打着节拍诵读儿歌。3.赠送秘籍:信心、勇气、智慧。(张贴)活动四:计划书写,情感升华导语:那么现在请大家带着这份秘籍,写下你下一个想尝试的事情吧!出示任务:学生写下还想尝试的事情,并指定一两名学生说出自己的挑战内容。反馈指导:1.写出自己想尝试的事情。2.汇报分享自己想尝试的事情。小结:同学们,面对挑战,我们需要一点信心,需要一点勇气,还需要一点智慧,那么,请带着智慧、勇气、信心,完成你们的下一次挑战吧!预祝大家挑战成功!六、浓缩文本,说板书根据二年级的年龄特点,本课板书以图画的形式呈现,能吸引学生的注意力,内容简单明了,重难点突出。
点拨:旅游地旅游资源的特色不同,可以安排的旅游活动是不一样的,直接影响对旅游者的吸引力。因此,出游前首先就需要收集旅游地旅游资源的类型、主要游览景区、景点的特色等情况。旅游地的时空可达性直接关系到旅游者从出发地到旅游地,然后再返回出发地的费用和时间。一般来说,居住地与旅游地之间的空间距离过大,会使旅行的时间过长、旅行费用过高,经济距离增加,相应地降低了旅游者的出游能力。而居住地与旅游地相距遥远,也意味着两地之间巨大的环境差异,这会增加对游客的吸引力。旅游服务设施和条件,如旅游交通方式及工具、旅游住宿条件、旅游餐饮的种类和标准、导游服务、旅行费用等信息也都在一定程度上影响着游客的选择。图5.3西藏布达拉宫和图5.4云南香格里拉两幅图片显示了西藏布达拉宫、云南香格里拉与众不同的优美景观,吸引了众多的游客前来观光旅游,成为近年来国内旅游的热点。
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.