反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2)、配乐朗诵,整体感知。要进一步了解国歌就要学习国歌的歌词,因此我以管弦乐《中国人民共和国国歌》为背景音乐有节奏地带领学生有感情地朗读歌词,让学生小组讨论探讨国歌表达的内容,加深学生对国歌的了解,让学生明白国歌的重要意义,加深学生的情感体验。3)、听赏齐唱歌曲《中华人民共和国国歌》。聆听是一切音乐实践活动赖以进行的基础,因此我让学生听赏齐唱歌曲《中华人民共和国国歌》,提出聆听要求:歌曲可以分为几部分?每部分可以划分为几个乐句?说一说为什么要这样划分。分组讨论,再小组汇报。通过这部分的聆听学习,小组讨论,发挥了学生的团结合作能力和学习的主动性,把歌曲划分为两部分,第一部分是引子,第二部分由四个乐句组成。
国旗下的讲话---做一个文明的高中生 大家早上好!新学期伊始,我们带着希望、带着梦想,又踏上了新的征程,我们带着微笑、带着清新,迎来了新的一天,当黎明的光划破黑暗,它就意味着我们也已长大成人。同学们,也许,你昨天曾拥有辉煌,但那已灰飞烟灭段甜蜜的回味,也许,你昨天曾遭受挫折,但那已成为腮边几滴苦涩的泪痕,忘记以前的成功与失败,我们只需把经验和教训铭记于心,把学习作为每日的挑战,把生活作为对我们的磨炼,怀着自信与乐观,迎接战斗,我想拥有一个良好的心态即是做一个文明的高中生的前提。同学们,高中阶段是人生的黄金时期,而新中,更是你成功的转折点,是你人生的一步大跨越,这里有众多的良师益友; 这里有优雅的学习环境;这里有严格的校规校训。那我们如何做一名品学兼优、文明礼貌的高中生呢?
遵守校纪校规,做文明高中生各位老师,各位同学:大家早上好!今天国旗下讲话的的题目是 “遵守校纪校规,做文明高中生”。日升月落,斗转星移,不觉间,我们已经走过十六七个春秋,匆匆的脚步,如水的岁月,冲淡我们许许多多美好的记忆,尘封许许多多精彩的往事。但对于我们,至真至诚地遵守校规,则是我们心中遵循的坚定信念。自觉养成遵纪守法的习性,是我们珍惜的道德底线,遵纪守法牢牢铭刻在我们的心间,伴随我们快乐健康成长。古人云:"无规矩不成方圆。"马克思说:"我们必须遵守组织的规矩,否则一切都将陷入污泥中。"国有国法,校有校规。这些法律规章是维系国家、学校的基本规则,国家要发展,学校要和谐,我们就要自觉遵守国法,自觉遵守校规。这是毫无疑义的。要自觉遵守校纪校规,做文明的学生,就要用智慧的双眼,清醒的头脑,理智的行为,看学校,看社会,去做事,去为人。我们还年轻,我们往往迷惘与清醒并存,我们要压抑着青春的激荡,要收敛年少的狂放,远离憧憬的诗行,抛弃感情的冲动,迈向理性,走向成熟。
各位老师、各位同学:早上好,我今天讲的题目:《让文明礼仪之花在我们校园处处盛开》。首先,我们来看在校园内出现的几个令人欣喜的现象:早晨,总看见同学们背着书包走进校园,抓紧时间认真地进行早读。还有不少值日的同学,在老师的带领下,打扫班级卫生;或在绿化包干区捡拾落叶和纸屑。三(6)班、三(7)班的一些同学,每天认真地擦着玻璃窗,他们班的玻璃窗总是最亮的。中午,同学们排着整齐的队伍,有的去食堂用餐,有的回家或由家长送饭。食堂用餐的学生用完餐后整理好餐具,翻好凳子,然后走出食堂,决不把没吃完的鸡腿之类的食物带出食堂;而回家吃饭或送饭到校的学生,也按照学校的要求,拿了饭菜在教室里用餐,吃完后再把餐具拿给家长带回家。傍晚放学了,同学们在老师的带领下,排好队伍,带着一天学习的收获,由家长接回家。事实上,良好的行为习惯,是我们顺利学习的前提,也是树立健康人格的基础。著名学者梁启超曾说过,少年智则国智,少年强则国强。我们是祖国的花朵,我们是祖国的未来。如果我们养成了文明的行为习惯,学习环境就一定是良好的、有序的。
高中国旗下讲话稿:秋日思语敬爱的老师,亲爱的同学们:大家好,我是来自高一五班的xx,今天我国旗下讲话的题目是《秋日思语》。《月令七十二候集解》说:“九月节,露气寒冷,将凝结也。”寒露时节,北方地区均已进入秋季或即将进入冬季。寒露过后,气温逐渐下降,深秋随之而来。秋是那么的令人盼望,清晨漫步校园,晨雾缭绕,烟水茫茫,拾起一片落叶,自相难忘。正如刚上高一的我们,还在享受着初遇的喜悦,对新同学新老师有各种各样的遐想,记得第一次返校报道,老师热情地把我们迎进教室,为我们每一个人都准备了见面礼,也是在那间教室,留下了我们在丰台二中的第一张照片。直到现在,我仍在回望,回望着彼此带来的欢欣与难忘。秋是那么的多样,菊花黄,雁回南方,各种昆虫叫声逐渐悲凉,仍渴望在夏季徜徉。倚窗听虫鸣,各种情绪悄然涌上心头。秋天也是那么美好,叶子是渐渐黄的,风是慢慢凉的。在菊花丛里寻香,在乡村里寻找丰收的果实。菊花开满了田野,花生,玉米,填满了谷仓。柿子压弯了树干,红枣笑脸张张。不仅是农作物在这个时节成熟,俗话说一分耕耘一分收获,耕耘就体现在一些细节上,比如同学之间的合作,大家会利用下课或午休的时间把不会的题找老师或同学问清楚。
高中国旗下讲话稿:秋日思语敬爱的老师,亲爱的同学们:大家好,我是来自高一五班的xx,今天我国旗下讲话的题目是《秋日思语》。《月令七十二候集解》说:“九月节,露气寒冷,将凝结也。”寒露时节,北方地区均已进入秋季或即将进入冬季。寒露过后,气温逐渐下降,深秋随之而来。秋是那么的令人盼望,清晨漫步校园,晨雾缭绕,烟水茫茫,拾起一片落叶,自相难忘。正如刚上高一的我们,还在享受着初遇的喜悦,对新同学新老师有各种各样的遐想,记得第一次返校报道,老师热情地把我们迎进教室,为我们每一个人都准备了见面礼,也是在那间教室,留下了我们在丰台二中的第一张照片。直到现在,我仍在回望,回望着彼此带来的欢欣与难忘。秋是那么的多样,菊花黄,雁回南方,各种昆虫叫声逐渐悲凉,仍渴望在夏季徜徉。倚窗听虫鸣,各种情绪悄然涌上心头。秋天也是那么美好,叶子是渐渐黄的,风是慢慢凉的。在菊花丛里寻香,在乡村里寻找丰收的果实。菊花开满了田野,花生,玉米,填满了谷仓。柿子压弯了树干,红枣笑脸张张。不仅是农作物在这个时节成熟,俗话说一分耕耘一分收获,耕耘就体现在一些细节上,比如同学之间的合作,大家会利用下课或午休的时间把不会的题找老师或同学问清楚。
高中国旗下讲话稿:秋日思语敬爱的老师,亲爱的同学们:大家好,我是来自高一五班的xx,今天我国旗下讲话的题目是《秋日思语》。《月令七十二候集解》说:“九月节,露气寒冷,将凝结也。”寒露时节,北方地区均已进入秋季或即将进入冬季。寒露过后,气温逐渐下降,深秋随之而来。秋是那么的令人盼望,清晨漫步校园,晨雾缭绕,烟水茫茫,拾起一片落叶,自相难忘。正如刚上高一的我们,还在享受着初遇的喜悦,对新同学新老师有各种各样的遐想,记得第一次返校报道,老师热情地把我们迎进教室,为我们每一个人都准备了见面礼,也是在那间教室,留下了我们在丰台二中的第一张照片。直到现在,我仍在回望,回望着彼此带来的欢欣与难忘。秋是那么的多样,菊花黄,雁回南方,各种昆虫叫声逐渐悲凉,仍渴望在夏季徜徉。倚窗听虫鸣,各种情绪悄然涌上心头。秋天也是那么美好,叶子是渐渐黄的,风是慢慢凉的。在菊花丛里寻香,在乡村里寻找丰收的果实。
高中国旗下讲话稿:秋日思语敬爱的老师,亲爱的同学们:大家好,我是来自高一五班的xx,今天我国旗下讲话的题目是《秋日思语》。《月令七十二候集解》说:“九月节,露气寒冷,将凝结也。”寒露时节,北方地区均已进入秋季或即将进入冬季。寒露过后,气温逐渐下降,深秋随之而来。秋是那么的令人盼望,清晨漫步校园,晨雾缭绕,烟水茫茫,拾起一片落叶,自相难忘。正如刚上高一的我们,还在享受着初遇的喜悦,对新同学新老师有各种各样的遐想,记得第一次返校报道,老师热情地把我们迎进教室,为我们每一个人都准备了见面礼,也是在那间教室,留下了我们在丰台二中的第一张照片。直到现在,我仍在回望,回望着彼此带来的欢欣与难忘。秋是那么的多样,菊花黄,雁回南方,各种昆虫叫声逐渐悲凉,仍渴望在夏季徜徉。倚窗听虫鸣,各种情绪悄然涌上心头。秋天也是那么美好,叶子是渐渐黄的,风是慢慢凉的。在菊花丛里寻香,在乡村里寻找丰收的果实。菊花开满了田野,花生,玉米,填满了谷仓。
今年以来,在市委、市政府的坚强领导和关心下,我区坚持中国农谷核心区建设不动摇,紧扣高质量发展要求,聚焦生态农产品加工和农耕文化旅游两大产业,抢抓乡村振兴、农垦改革等多重机遇,扎实推进各项工作,全区经济社会发展呈现出健康发展的良好态势。上半年,出口总额完成X万美元,同比增长X%,增幅全市排名第一;工业用电量同比增长X%,增幅全市排名第三;公共财政预算收入完成X元,同比增长X%,增幅全市排名第三;其它经济指标较好实现双过半任务。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。