活动目标:1、创设情境,让幼儿在操作过程中尝试列出得数是2的加法算式,理解加号、等于号的含义。2、感知加法算式所表达的数量关系。3、在活动中体验游戏的愉悦,提高幼儿学习数学的兴趣。 活动准备: 物质准备:1、城堡图一幅(三层)第一层:鱼塘第二层:花园第三层:水果店 (1条热带鱼+1条金鱼=1条热带鱼1条金鱼)图一幅 2、幼儿操作材料(+、=40个,数字1、1、2各40张)、水果用具若干(每名幼儿两种)、水果购物券84张 知识准备:幼儿会以游戏的方式进行2的组成
在歌曲学习中,由于歌曲节奏疏密相间,运用了许多十六分音符构成的节奏型以及切分节奏,因此节奏是个难点。在演唱过程中,我发现学生对十六分音符和切分音符这两个节奏很难掌握,因此,我先让学生学习这两个节奏,并设计了两条节奏让学生练习,让他们拍手打节奏,使他们熟悉节奏的特点,再用到歌曲中,这样学生在学唱的时候脑子里就有了初步的印象。另外,四年级学生的识谱能力较弱,在看到旋律的时候不能一下就反应出来,尤其是这种旋律和节奏较为复杂的歌曲,所以,我尽量让学生以听范唱为主,跟着录音一起把歌曲唱好。为了解决歌曲中切分节奏,我采用请学生模仿教师拍节奏、师生对拍、接龙拍击等方式解决,在活动中适时地填入歌词(山中的清泉香喷喷;湖里的水菱甜又香),并加入小间奏边拍边读(学生容易忽视小间奏);听教师演唱学生在小间奏处拍手;最后过渡到学生听琴演唱而小间奏处用高八度音伴奏等,学生在和教师的互动中不仅学得津津有味,而且效果非常好。
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
4、【自主探究】巴山夜雨的成因③材料三:三国时期,诸葛亮于农历6月的一天,在葫芦峪设下伏兵,打算用火攻全歼司马懿。这一天,晴空万里暑热难耐,真乃火攻之良机。诸葛亮依计将司马懿之众诱入谷中……然而,正当大火冲天,司马懿全军行将覆灭之时,一场大雨不期而至,大雨浇灭了诸葛亮扶汉反魏的壮志,使他喊出了“谋事在人,成事在天,不可强也”的千古悲歌。【设计理念】前后呼应,发散思维。通过自主探究,学生各抒己见,完成对热力环流整个知识框架的一个总结,既考查了学生的课堂学习效果,又锻炼了学生知识的迁移能力,并认识生活中的地理规律,用生动的语言拉近学生与大气理性知识的距离,体会到地理学科的重要性。【提问】如果将白天换成夏季,将夜间换成冬季,情况又会怎样?城市与郊区之间也存在着热力环流——城市风,它们是怎样形成的?了解城市风的出现有何重要意义?如果地球上在赤道和两极之间存在热力环流,这个热力环流应该怎样?这几个问题,请大家课后慢慢思考。
(一)教材的地位与作用教材第一部分的顺序是:先给学生洋流的概念以及洋流按照性质的分类,接着说明洋流的主要成因与盛行风有关。并结合风带与洋流模式图总结和归纳了洋流的分布规律。最后,给出世界表层洋流的冬季分布图,让学生读图思考的问题主要涉及洋流的分布规律和原因。教材第二部分阐述了洋流对地理环境四个方面的影响。教材的顺序和要求与课标要求、学生认知规律有矛盾的地方,需要重组教学的顺序——先由洋流对地理环境和人类活动的影响的例子来设置悬念,激发学生认识的欲望,提供材料归纳世界表层洋流的分布规律,再探究其主要驱动力。(二)教学目标(1)知识与技能目标:①运用地图,从分布位置、运动方向、寒暖流的位置来归纳世界表层洋流的分布规律②画出世界表层洋流的分布简单模式图③掌握洋流的主要成因
各位老师,同学们:大家好!今天,和大家一起探讨的问题是“如何掌握学习方法?”特别是对于向中考冲刺的同学们。爱因斯坦说过:“成功=艰苦的劳功+正确的方法+少说空话。”对于渴望取得高分的同学来说,艰苦的劳动和少说空话是容易做得到的,而正确的方法,摸索的过程就有些困难。希望下面一些看法,能为大家带来的灵感!一、大致浏览上课内容,做好课前准备。虽然说如今作业不算少,但一节课的时候是十分宝贵的。而人接受新知识需要一定的时间,你可能因此错过一些重点内容。相反地,课前预习,能促使你上课思维主动,做到心中有数。就如常言道:“磨刀不误砍柴功”呢!二、注重听课环节。众所周知,认真听课是提高成绩的关键。为此,你必须学会巧抓重点,善做笔记,让思路与手并进,成份大地注重理解!相信大家,会有不匪的收获!
但倘若教师的人格品德、学识不高,缺乏从事教师职业所必备的遵循职业道德、行为规范的自觉性,试问:他将如何去履行他的天职,完成他的使命呢?这正如陶行知先生所说:“道德,是做人的根本,根本一坏,纵然你有一些学问和本领也无其用处。”由此可见,师德是立教之本,正因为教师职业具有的特殊性和教师使命具有的特定性,所以时代与社会对教师职业道德要求水准高于其他行业。教师在学生心目中,是知识的化身,是智慧的源泉,是道德的典范,是人格的楷模,是先进思想文化的传播者,是莘莘学子人生可靠的引路人。因此,教师以德立教以身示教,与时代同步,锻造不朽师魂!
第一、要热爱教育事业 教师的道德是教师的灵魂,师德是教师职业理想的翅膀,教师的工作是神圣的,也是艰苦的,教书育人需要感情、时间、精力乃至全部心血的付出,这种付出是要以强烈的使命感为基础的。“育苗有志闲逸少,润物无声辛劳多”。一个热爱教育事业的人,是要甘于寂寞,甘于辛劳的。这是师德的首要条件。
一.教学内容。我今天说课的内容是新人教版教材小学数学六年级上册第一单《分数乘法》例5《小数乘分数》。这部分是教材新增加的内容,用一课时进行教学。二.说教材。1.教材分析本部分的教学是在学生掌握了整数乘法、小数乘法、分数乘法、以及整数和小数混合运算、简便计算的基础之上进行的教学。教学中不仅涉及到分数与小数的互化,假分数与带分数的互化,整数与分数的互化,而且对如何判断一个分数是否能化成有限小数等知识都会涉及。通过教学本例题要使学生经历探究计算方法的过程,运用多样化的解题思路开拓学生的计算思维,提高学生的计算能力。为教学例6、例7的分数混合计算和简便计算奠定基础。
今天是3.23,引来了第55个世界气象日。世界气象日又称国际气象日,是世界气象组织在1960年决定把3.23定为世界性纪念日,每年确定一个主题。中国是世界气象组织的创始国之一。今年气象日的主题是“气候知识服务气候行动”。恰逢今天是xx高中第四周国旗下讲话,G1407班童泽轩同学以环保为主题,向大家介绍了世界气象日的有关信息。由于天气原因,国旗下讲话改为广播会议。世界气象日,与孩子们一起亲近气象——记xx第四周国旗下讲话童泽轩同学在演讲中说到,绿色环境是健康自然的一种象征,绿色能带给我们生机、带给我们活力,而绿色校园中的绿色也不就只是一种颜色那么简单。走进我们如今洋溢着书香味的校园,你会被那迷人的风景所吸引。漫步在校园里这一派绿景下,会使你感到精神振奋、心情舒畅。校园中的绿色风景,对我们是及其有益的。一节课后,站在走廊上看看校园中的绿,让我们精神达到更高更好的状态!在课余时间,同学们又可以在校园小道上走走,看看周围的景物,不是有着置身花园之感吗?
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
一、 教学目标根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:学习目标:1、复习巩固对数函数的图像及性质2、运用对数函数的性质比较两个数的大小能力目标:1、 培养学生运用图形解决问题的意识即数形结合能力2、学生运用已学知识,已有经验解决新问题的能力3、 探索出方法,有条理阐述自己观点的能力
我们大家都知道大地上站立的最大的生命群体是森林,大地上最悦目的颜色是绿色,绿色是大自然赠与我们人类的宝贵财富,绿色是人类文明的摇篮。人人都渴望拥有一个美好的家园,人人都希望生活在人与自然和谐发展的文明环境里。如今我校各方面的建设有序的进行着,我们的校园环境也正在发生全面的变化,校园环境建设是我们金源师生必须直面的问题,校园绿化程度直接作用于我们的生活环境,决定着校园生活的色彩,当然,绿色校园不只是环境绿化与垃圾处理问题,其涵义应更广更深,指一种健康向上的生活态度和生活方式,比如,严肃活泼的学术氛围,积极进取的精神风貌等。创建绿色校园,不仅只是要有优美的硬件环境,更应该提高我们自身的修养和素质,因此我们每一个金源学子都应成为护绿天使,用我们的实际行动去影响周围的人。结合学校‘三育’教育在此我提出以下几点倡议:
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。