1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
重创新勤思考,完成国家投入产出试点任务。为论证统筹开展经济普查与投入产出调查的可行方法,国家统计局在全国选取6个省份开展专项试点工作,我区被选为辽宁省两个试点县区之一,采取选聘调查员方式入户调查。在国家和省市局的有力指导下,我区严格按照试点工作要求,以发现问题、解决问题、反映问题为工作抓手,以提出建议和积累经验为核心脉络,坚持组织推动和专业指导同步、过程把控和数据质量兼顾,先后开展4场业务培训,创新性设计带有审核规则的电子报表,高质量完成国家和省市统计局领导专题调研,完成149家调查单位1513张调查表数据质量审核工作,形成了2万余字的试点工作报告,圆满完成试点各项任务,并得到国家、省、市局领导高度评价。
D的十八大以来,以同志为核心的D中央以猛药去疴、重典治乱的决心,以刮骨疗毒、壮士断腕的勇气,坚持反腐败无禁区、全覆盖、零容忍,坚定不移“打虎”“拍蝇”“猎狐”。D内政治生态得以净化,D内政治生活展现新气象,D心民心为之振奋。但回过头来,审视那些腐败分子,可以发现他们之所以跌入违纪违法的陷阱,从根本上讲就是把初心和使命抛到九霄云外去了。房间要经常打扫,镜子要经常擦拭。正如所指出,不忘初心、牢记使命不是一阵子的事,而是一辈子的事。新时代,各级D组织和广大D员、干部更要经常进行思想政治体检,以D的创新理论滋养初心、引领使命,从D的非凡历史中找寻初心、激励使命,在严肃D内政治生活中锤炼初心、体悟使命,锐意进取、开拓创新,埋头苦干、真抓实干,把我们的事业继续向前推进。把酒酹滔滔,心潮逐浪高。今年是决胜全面建成小康社会、打赢精准脱贫攻坚战、实现“十三五”规划收官之年。以此次ZT教育为起点,以理想信念烛照奋进方向,我们的道路必将越走越宽广,我们的梦想必将化为光辉的现实。
(二)丰富路径,支持青年参与社会治理。一是发挥青年社团对行业发展的推动作用,支持有影响力的青年社会组织参与团建项目。开展青年与人大代表、政协委员面对面活动,积极撰写青年提案。二是推动驻X高校与乡村社区、文化景区结对,分行业、分系统组建青年志愿服务队伍,推出一批社会需要、青年热衷、群众欢迎的精品服务项目,让青年发展与城市建设双向奔赴。(三)优化服务,营造青年友好城市氛围。一是拓展青年活动阵地。在青年集聚地打造“青年之家”,依托科技园区、孵化基地、众创空间等举办青年联谊会、文化沙龙等活动,增进青年跨行业、跨系统、跨地域交流,解决青年的交友、婚恋需求。二是扎实做好人才驿站与“青年之家”的协同联动,探索设置青年人才服务区,提供就业创业政策、技能培训、志愿活动等公益性、综合性服务信息,切实将“政策暖风”吹进青年人才心里。同时强化底线思维,对驿站运营过程中可能出现的负面舆情、负面事件进行推演,制定舆情应对预案。
(二)丰富路径,支持青年参与社会治理。一是发挥青年社团对行业发展的推动作用,支持有影响力的青年社会组织参与团建项目。开展青年与人大代表、政协委员面对面活动,积极撰写青年提案。二是推动驻X高校与乡村社区、文化景区结对,分行业、分系统组建青年志愿服务队伍,推出一批社会需要、青年热衷、群众欢迎的精品服务项目,让青年发展与城市建设双向奔赴。(三)优化服务,营造青年友好城市氛围。一是拓展青年活动阵地。在青年集聚地打造“青年之家”,依托科技园区、孵化基地、众创空间等举办青年联谊会、文化沙龙等活动,增进青年跨行业、跨系统、跨地域交流,解决青年的交友、婚恋需求。二是扎实做好人才驿站与“青年之家”的协同联动,探索设置青年人才服务区,提供就业创业政策、技能培训、志愿活动等公益性、综合性服务信息,切实将“政策暖风”吹进青年人才心里。同时强化底线思维,对驿站运营过程中可能出现的负面舆情、负面事件进行推演,制定舆情应对预案。
主要领导亲自组织编写、审定装饰文案,突出青年特色,营造青春向上的积极氛围。组建专门微信群集思广益,从颜色、图案等细节抓起,对桌面摆台、大厅立屏、引导标牌等元素进行把关,先后五次系统修订设计方案,目前已完成氛围营造,正积极筹备揭牌仪式。二、下步谋划(一)讲好故事,吸引青年人才走进XX。一是打造凝聚青年的网络平台。积极筹建新媒体协会,打造“青春XX”会客厅,搭建青年参与、人才汇聚、互动便捷的网络平台,推出网络爆款作品,推出一批高质量网络原创产品,提高城市知名度、美誉度。二是深入推进“青春寻访”计划。利用暑期组织大学生开展青春寻访活动,规划科技创新、先进制造、文旅文创等多条精品线路,依托高科技头部企业考察、高品质城市建设观摩、红色教育基地研学等,使大学生充分感受XX的发展前景、创新活力、生态之美,增进认同感、归属感。
(四)认真抓好林业灾害防控工作。一是保持森林防火平稳态势。出动宣传车辆300余次,发放森林防火、有害生物防治等宣传资料7000余份,AAA和抖音宣传森林防火投放60余万次,防火码APP应用率100%。开展野外火源治理及林区输配电设施火灾隐患排查8次,制止违规用火40余起,排查火灾隐患18处,均已整改,二是林业有害生物防治安全可控。开展5·12林草生物灾害防控宣传周活动。投入450万元开展美国白蛾飞机防治工作,共计作业面积40万亩,至6月6日,全部顺利完成。(五)壮大林业产业发展成果。一是抓住产业重点。重点发展林下种养殖和森林康养,目前已完成林下种植面积XX万亩,产值XX亿元;林下养殖面积XX万亩,产值XX亿元;森林景观利用5万亩,产值XX亿元。申报第九批省林业产业化龙头企业8家。
(四)强化新技术应用。持续推进大数据分析等新技术在公共资源交易领域的应用,依靠科技创新破解公共资源交易发展中遇到的重大问题和突出矛盾。持续探索“大数据分析系统”“智能电子档案归集系统”“监控视频自动刻录系统”“手机移动端系统”等功能模块建设,推进公共资源交易由“电子交易”向“智慧交易”升级。持续完善不见面、远程异地评标系统建设,不断提升全市公共资源交易电子化水平。(五)加强公共资源交易智慧大数据分析平台在招标投标领域的运用。启用市公共资源交易智慧大数据分析平台,建立公共资源交易数据模型,强化数据融通和价值挖掘,提升交易中心围标串标风险预警及监测能力。(六)加强系统安全防护。开展系统、机房网络的安全检测,在原有平台系统定期维护更新的基础上,全面优化升级信息系统的上云方案,不断满足全市公共资源电子系统安全建设要求。
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
(一)记教学日记 教师在自己的教学过程中或教学结束之后,对自己教学得失可以进行总结反思,这种反思可以从以下几个方面入手:从教学参与者看,可以反思教师的教学行为得失。主要涉及到的是教学方法的反思,如针对不同类型的知识(概念、原理等)是否采用了相应的方法,以及教学方法与教学目标的适合性,可以反思学生的学习行为得失,反思教学目标的达成情况;从教学进行的步骤看,可以反思教学的导入,教学各环节的衔接;从教学内容看,可以反思教学目标设置的合适性,教材内容重点、难点的处理,单元教学内容在学科体系中的位置等。 (二)说课 说课是对备课的口头说明,但它不同于备课,说课讲备课的过程及其理由,而备课主要是指教学的内容和方法。 说课教学反思方面具体体现在:教师在备完课乃至讲完课之后,对自己处理教材内容的方式与理由做出说明,讲出这些过程,就是讲出自己解决问题的策略。而这种策略的说明,也正是教师对自己处理教材方式方法的反思。事实上,说课总是讲给同行听的,同行听后要提出建议与评比,这是一个很好且有效的教学反思途径。并能形成反思群体,共同提高。 (三)听课与评课 听课决不是简单地评价别人之优劣,不是关注讲课者将要讲什么,而是思考自己如何处理好同样的内容,然后将讲课者处理问题的方式与自己的预想处理方式相对照,以发现其中的出入。教师讲课时并不总是能注意到自己教学上的得失,但若课后观看自己的教学录像,特别是与同行、专家教师一起,边看边评,则更能看出自己在教学中的长短。
二是林下经济初具规模。2023年,省下达我州利用林地发展林下经济面积达到xxx万亩、产值达到xx亿元。前三季度全州累计经营和利用林地发展林下经济面积xxx.xx万亩,产值xx.xx亿元,面积年度目标任务完成率xxx.xx%,产值年度目标任务完成率xx.xx%,预计到年底全州经营和林下经济利用面积、产值均能完成年度目标任务。我州现有国家级林下经济示范基地x个(xx县、xx县、xx县、xx县各x个),林下经济类定制药园xx家。三是森林康养基础提升。截至目前,我州有国家级森林康养试点基地x个,省级森林康养试点基地x个,xx森林康养基地正式被xx省林业产业联合会授牌“省级森林康养基地”。四是花卉产业特色凸显。全州现有花卉种植面积xx.xx万亩,其中观赏花卉种植面积x.xx万亩,现有重点花卉企业有xx家,其中重点企业x家;xx州xx动植物科技开发有限公司获得国家林业重点龙头企业称号,实现了我州国家级林业重点龙头企业零的突破。x月xx日至xx日,第十四届xx省兰花博览会在xx市xx产业博览园盛大开幕,x万多株参展兰花吸引了来自全国各地的“兰迷”们相约盛会,本次博览会共展出x万多株兰花,约xxxx个品种,其中部分保育的新品种首次亮相。