提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

初一上册数学工作计划

  • 医院部门工作计划四篇

    医院部门工作计划四篇

    二、多与病人沟通  在工作中医患关系主要是沟通不及时,沟通少造成的,为了避免不必要的事情发生,在给病人治疗之前,诊断之前,会提前与病人做好沟通,与病人家属做好协商,得到病人同意之后我们才会采取行动,如果病人或者其家属不同意,我们也会给出合理的建议,当然都会站在病人的角度去考虑问题,去为病人思考而不是私自做主,虽然我们想要及时给病人治病及时给他们帮助,但是病人自己的意见和家属的意见一样很重要。  同时对所有的病人都一视同仁,尊重病人,也会善待病人,减少与病人的冲入,在与病人相处的时候多尊重病人,不因为病人患有各种疑难疾病而对病人有明显的歧视行为,一切都以病人的健康为主,沟通是建立在彼此尊重的基础上,彼此要相互体谅,把沟通做好,也要重视,不能制作一个不知声的人,这样对于病人,对于家属都不好,想要做好就要给他们更多的帮助,润物细无声,做要做的好,做的细致。

  • 安全问题工作计划合集

    安全问题工作计划合集

    一、提高安全意识,加强班级管理  牢固树立“安全第一”的思想,排除安全隐患,加强学生日常行为习惯的安全教育。从小事做起,对学生晓之以理,从小事中培养学生的安全意识;动之以情,在小事中提高学生自我保护能力;导之以行,引导学生远离安全事故。  二、具体措施  1.带领学生学习《小学生守则》、《小学生日常行为规范》及学校里有关安全教育的各项规定,增强学生学习、执行规范守则的自觉性。抓好学生的公共安全意识,切实保障学生的人生安全。

  • 银行2024年上半年金融服务工作总结和下半年计划(汇报报告)

    银行2024年上半年金融服务工作总结和下半年计划(汇报报告)

    一是进一步优化信贷结构,加大对民营和小微企业、乡村振兴、绿色低碳等重点领域的金融支持;积极推广“小微易贷”“极速贷”等线上普惠金融产品,实现客户申请、审查审批、放款提款在线化“非接触融资服务”,不断提高普惠金融的覆盖面。二是推动降费让利政策精准落地,主动向小微企业、个体工商户宣传减费让利政策,以“应知尽知”确保“应享尽享”。认真落实普惠小微支持工具相关政策,按照市场化原则对各类市场主体应贷尽贷,对贷款利率应降尽降,对贷款费用应免尽免,对贷款程序应简尽简。三是进一步下沉金融服务,积极推进数字金融的赋能乡村振兴,纵深推进农村信用体系建设;紧盯辖内特色种养殖业、特色优势农产品、乡村旅游以及返乡创业群体,创新推出适配性强的金融产品和服务,全力支持乡村振兴发展。

  • 2024年国企集团公司上半年工作总结和下半年计划业务汇报

    2024年国企集团公司上半年工作总结和下半年计划业务汇报

    二是聚焦能力建设,掌握新技术,打造竞争力。当前检测企业间竞争日趋激烈,国际事业部人才流失较为明显,推动发展的“驱动力”呈现弱势。我们将围绕国际化人才梯队建设,出台配套支持政策,提升队伍能力,快速掌握Wi-Fi7、5G毫米波等前沿无线技术,提升本地化测试能力,解决客户产品全生命周期中面临的新技术导入滞后、认证标准理解偏差等问题,助力企业打造具有国际竞争力的产品。三是聚焦业务推厂,瞄准大趋势,实现大突破。面对国际认证市场日益萎缩的现状,我们将把视线放到发展“潜力”上来,更加重视“一带一路”国家和第三世界国家的需要,立足检测中心的技术、服务优势,依托我国“一带一路”整体思路,针对发展中国家检测能力弱、发展需求大等特点,以产业升级、技术出口,找到国际业务发展“突破点”“新蓝海”。

  • 公司电话销售工作计划八篇

    公司电话销售工作计划八篇

    一、要克服自己的内心障碍  有些人在打电话之前就已经担心对方拒绝自己,遭到拒绝后不知该如何应对,只能挂断电话,甚至有些人盼着电话快点挂掉、无人接听,总是站在接电话人的角度考虑,想象他将如何拒绝你。如果你这样想,就变成了两个人在拒绝你。那打出的电话也不会收到预期的效果。克服内心障碍的方法有以下几个:  (1)摆正好心态。作销售,被拒绝是再正常不过的事情。不正常的是没有人拒绝我们,如果那样的话,就不需要我们去跑业务了。我们要对我们自己的产品和服务有百分之两百的信心,对产品的市场前景应该非常的乐观。别人不用或不需要我们的产品或服务,是他们的损失。同时,总结出自己产品的几个优点。

  • 关于售后人员的工作计划合集

    关于售后人员的工作计划合集

    一、别克售后的经营状况  20**年别克售后的年终任务是xx万,截止20**年6月底我们实际完成产值为xx元,,完成全年计划的xx%,与年初的预计是基本吻合的。  其中总进厂台数为xx台,车间总工时费为xx元(机修:xx元,钣金:xx元,油漆:xx元),我们的配件销售额为xx元,其中材料成本(不含税)为xx元,材料毛利为xx元,已完成了全年配件任务的xx%。

  • 关于师德的个人工作计划三篇

    关于师德的个人工作计划三篇

    一、师德的要求——爱岗敬业、献身教育  教师的职业有苦也有乐,平凡中见伟大,只有爱岗敬业,教师才能积极面对自身的社会责任和社会义务,才能自觉、不断地完善自我,才能在教育活动中有所收获。  教师不仅仅是在奉献、在燃烧,而且同样是在汲取,在更新,在升华。教师要付出艰辛的劳动,但是苦中有乐,乐在其中。教师的乐趣就是照亮了别人,充实了自己。正是这种成就感、幸福感,激励着千千万万的教师不辞辛劳地为教育事业献身。

  • 应急救援宣传教育工作计划三篇

    应急救援宣传教育工作计划三篇

    1、在全矿范围内宣传普及预防、避险、自救、互救、减灾等应急知识。  2、通过矿内广播、板报、通讯等有效方式大力宣传事故应急。  3、结合安全年活动的开展,进一步加大应急教育宣传工作力度,争取每月有一篇应急教育的宣传报道在县公司的报刊上发表。  4、灵活运用,形式多样,采取员工喜闻乐见的方式有针对性的进行宣传教育,将宣传教育工作的触角延伸到每一个员工。

  • 个人计划生育工作总结范文

    个人计划生育工作总结范文

    2、强化避孕节育措施的落实,推进优质服务(1)扎扎实实开展服务工作。我们根据群众的要求,积极开展生殖健康系列化服务。即:婚前服务、孕期服务、哺乳期服务和三随访服务等四项服务工作,有效地保障了公民的生殖健康权。(2)认真开展“三查”(查环、查孕、查病)工作。自去年以来,我们每年组织区计生服务站和妇幼保健所,抽调专门力量组成计划生育技术服务小分队,深入到各街道办事处免费为全区育龄妇女开展查环、查孕、查病工作,先后为 名妇女做了妇科检查,为 名妇女做了B超检查,对检查中发现的疾病及时给予治疗。 乡坚持每季为已婚育龄妇女查环、查孕一次,全年共查 名。“三查”工作的开展,既方便了群众,又保障了育龄妇女的身体健康。三、计划生育工作中存在的主要问题及困难1、在机构改革和社区规模调整中,部分乡、街道办事处分管计生的领导和计生助理员及居委会主任进行了调整,工作不太熟悉。2、 区是个老城区,各方面的条件都比较差,特别是旧城改造过程中,常住人口搬迁变动大,人户分离现象严重,给计生工作造成一定的难度,增加了工作量。

  • 初中数学人教版二元一次方程组教学设计教案

    初中数学人教版二元一次方程组教学设计教案

    (一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 政务服务中心2022年工作总结暨2023年计划

    政务服务中心2022年工作总结暨2023年计划

    一、重要荣誉 年月市总工会颁发的“市母婴关爱室示范点”荣誉称;月县政府门户网站代表县参省委网办举办的网络安全应急演练,“优秀防守单位”通报表扬。 二、主要工作落成情况 一推进“放管服”改革工作情况 一是积极创新服务园区模式。为推进政务服务与产业链无缝对接,制定了《推进广东家居智造产业链政务服务“一件事一次办”施方案》,对家居智造产业链项目行“上门办理”“极简审批”“集成服务”,着力打造“一件事一次办”园区版。编制《高新区家居智造企业极简审批服务办事流程一本通》,形成“项目开工”“竣工验收”“企业开办”“企业纳税”“人力资源配置”“生产要保障”和“惠企政策兑现”个“一件事”。依托县政务服务大厅“园区事园区办”综合服务窗口,组建了园区上门“帮代办”服务专班,明确各职能单位分管领导和联络员,规范“帮代办”服务流程,通过“一对一”帮办代办服务,全力为企业提供“母亲式”服务。二是大力推进涉企经营许可事项告知承诺制。布县本级第一批项施告知承诺制的涉企经营许可事项清单,编制《县涉企经营许可告知承诺应手册》,一次性告知准予许可条件、应当提交料和期限、后续监管规则、违反承诺后果等要,共梳理行告知承诺的申料项占总料数量的,其中承诺后补料项,事后现场核查料项,现企业准营极简审批。今年已通过告知承诺方式共办理共场所卫生许可、小餐饮经营许可等事项余件,企业群办理业务从原来的“跑两趟、至少天办完”,变为“最跑一趟、当场领证”,跑动次数和审批时间分别压减、以上。

  • XX镇2024年第一季度工作总结及下步规划

    XX镇2024年第一季度工作总结及下步规划

    (四)干部队伍建设还需进一步加强。部分镇村干部的思想、理念、能力和作风等方面与新时代的要求还不相适应,在处理一些村内事务上干部拍板多、群众发声少,农民群众多是被动参与到整治当中,群众的主观能动性发挥不足,干部担当进取精神有待进一步加强。三、下一步工作打算(一)聚焦招商引资,促进经济高质量发展坚持发展第一要务不动摇,切实提升开展招商引资工作的靶向性和成功率。超前谋划并制定招商引资各项机制,主动加强与在外创业成功人士的交流合作,积极搜集梳理各类招商信息,组建招商引资工作组,吸引项目向我镇聚集。全面对接县级及各村有效项目信息,每月摸排有效亿元以上信息不少于2个,亿元以下项目信息不少于4个,争取9月底完成全年2个亿元项目。(二)聚焦绿色宜居,持续改善人居环境。

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

上一页123...135136137138139140141142143144145146下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!