探究二:100以内数的大小比较。1、 (媒体出示课本第39页例8鸡蛋图。)师:看这鸡蛋图,谁知道哪边的鸡蛋多一些?你是怎么比较的?(学生可能回答:(1)根据鸡蛋图比较。(2)根据数的顺序比较。(3)根据数的组成比较。)(根据学生回答,点击○媒体出示答案。)2、 师:刚才我们看着鸡蛋图比较了两个数的大小,那如果没有图,我们会不会直接比较两个数的大小呢?我们请计数器来帮忙,谁来拨?(媒体出示计数器)师:谁能来说说每个数位上数的意义,再进行比较,说说比较的方法。(学生已经有了比较20以内数的大小的基础,教师引导学生在此基础上说出:28是由2个十和8个一组成,26是2个十和6个一组成,所以28>26;或者根据数数时28在26后面,所以28>26。)(点击表示28的计算器图,媒体出示28是由2个十和8个一组成;点击表示26的计算器图,媒体出示:26是由2个十和6个一组成;点击“26是由2个十和6个一组成”,媒体出示:28>26。)(师板书:28>26)
1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】 根据线段的中点求线段的长如图,若线段AB=20cm,点C是线段AB上一点,M、N分别是线段AC、BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其它条件不变,你能猜出MN的长度吗?请用简洁的话表达你发现的规律.
教学反思: 1.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.2.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.3.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
如图,四边形OABC是边长为1的正方形,反比例函数y=kx的图象经过点B(x0,y0),则k的值为.解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=kx图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1.方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号.三、板书设计反比例函数的性质性质当k>0时,在每一象限内,y的值随x的值的增大而减小当k<0时,在每一象限内,y的值随x的值的增大而增大反比例函数图象中比例系数k的几何意义通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
证明:如图,过点C作CF∥PD交AB于点F,则BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法总结:证明四条线段成比例时,如果图形中有平行线,则可以直接应用平行线分线段成比例的基本事实以及推论得到相关比例式.如果图中没有平行线,则需构造辅助线创造平行条件,再应用平行线分线段成比例的基本事实及其推论得到相关比例式.三、板书设计平行线分线段成比例基本事实:两条直线被一组平行线所截, 所得的对应线段成比例推论:平行于三角形一边的直线与其他 两边相交,截得的对应线段成比例通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.再次锻炼类比的数学思想,能把一个复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.在探索过程中,积累数学活动的经验,体验探索结论的方法和过程,发展学生的合情推理能力和有条理的说理表达能力.
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
(一)优势表现: 1、个性发搌较好。我班幼儿大多性格较开朗、活泼、乐群,能主动与人交往,也愿意用各种方平表达自己的情感。 2、好奇心强,乐于表现。在科学活动中,孩子们常常兴趣浓厚、发言踊跃。 3、活跃、好动,喜爱参与体育活动。我班幼儿精力充沛,喜欢参加赛跑、攀登等户外游戏等,大部分幼儿身体动作较挟调、灵活。幼儿总体体质水平有较大幅度提高。
2、复习点数6以内数量的技能。 3、乐于参与操作活动,感受发现的快乐。活动准备:大记录纸一张;幼儿人手一份纽扣、二个盘子、一张记录纸、铅笔;投影设备。活动过程:一、导入:观察老师衣服上的纽扣,数数有几粒。 二、观察多样的纽扣。1、师:小朋友,这些都是什么呀?(纽扣)数数一共有几粒?这些纽扣是什么样的?(幼儿相互交流)
新的《幼儿园教育纲要》指出:“教师应成为幼儿学习活动的支持者、合作者、引导者”。活动中应力求形成合作探究式的师生互动、生生互动。因此,活动中除了以积极饱满的情绪影响孩子外,我精选了以下几种教学方法:1.根据幼儿的具体形象思维占主要地位的特点和幼儿语言发展的特点,我采用视听唱法,引导幼儿在观察生动形象的图片,充分地刺激幼儿的视觉,用语言和音乐熏陶帮助他们轻松地理解歌曲内容,熟悉歌曲旋律。2.根据“先行组织者理论”,采用难点前置的方法,引导幼儿感知歌曲的强弱节奏,并分段学唱。从幼儿熟悉的雷声、蛙声入手,引导幼儿感受三拍子的强弱节奏,同时熟悉歌曲旋律,学唱歌曲。3.根据幼儿活泼好动的年龄特点,采用游戏对唱的方式,引导幼儿倾听同伴的歌声,学习协调一致地进行演唱。教学活动是老师和幼儿共同表演的舞台,而幼儿是学习活动的主体,教师的“表演”以及活动中所呈现的一切都必须为孩子自然的学习服务。因此,我在本次活动中注重幼儿自身的学习和体验,采用体验学习法和多种感官参与法,引导幼儿在体验中学习,通过想一想、说一说、看一看、听一听、学一学、唱一唱等多种感官的活动,学习演唱歌曲。
《萝卜回来了》是一篇讲述小动物们相互关心的童话故事,故事中以“萝卜”为线索,将小动物们把萝卜送给朋友分享的一个个情节,串联成一篇充满爱心和喜剧特色的故事。故事采用反复式的结构,类似情节一而再、再而三地出现,其中描述小动物心理活动的语句既有重复,又有不一样的内容,既易于为幼儿掌握复述,又对他们有一定的新鲜感,这一种方式给幼儿清楚明了的记忆和想象因素,符合中班幼儿思维的特点,因而可以很好的为幼儿接受。故事中所反映的“关心他人”、“与人分享”的情感主题,正是当今孩子所缺失的一种美好情感,因为“独生子女”的家庭结构以及充斥利益因素的快节奏社会生活,让现在大多数幼儿都缺乏“关心他人”、“与人分享”的情感体验,进而造成了孩子的“霸道”、“自私”,这和我们和谐社会的发展宗旨是背道而行的。新《纲要》中也提出:“在与同伴的交往中,要学习互助、合作和分享”,可见向孩子进行关爱他人的情感教育是非常重要的。特别是我们中班孩子,他们的交往热情日趋高涨,并已逐渐学会了交往,这时候,给他们树立起一个正确的、友善的交往情感态度,对他们今后的为人处世都将起到一个不容忽视的影响。
今天我抽到的说课题目是《甜蜜的家》,这是一个童话故事。它以现实生活为基础,通过丰富的想象、幻想,编制生动的情节来反映生活。《甜蜜的家》就是以家这个现实为基础,通过想象,把小房子拟人化描写他想成为一个甜蜜的家,它向好几只小动物询问要不要一个家,但结果都被拒绝了。直到有一天,北极熊一家搬进了小房子,终于让它拥有了一个甜蜜的家,也感受到了有家的幸福感觉。故事情节虽然比较简单,但是我们可以较清晰地感受到小房子前后的情绪变化,正是通过小房子的情绪变化,蕴涵着一个教育价值:家是甜甜的、暖暖的,是我们每个小朋友幸福的港湾,我们要爱我的家。然而生活在温暖而又甜蜜家庭的孩子们是体会不到没有家的孤单的,自然也不懂得去爱家,甚至关爱自己的家人。因此,这样的情感教育对小朋友是非常必要而有意义的。中班幼儿已经具备一定的生活经验,他们对家有了初步的认识,情感发展逐渐形成,并且他们也正逐渐开始使用一些丰富的、完整的语言来表达想法,故事中出现的“高高的大树,深深的地底,绿色的森林”都是幼儿可以值得学习的短句。于是,我设计了中班语言活动《甜蜜的家》。
1、以热身运动,引发幼儿对体育锻炼的兴趣。 2、以“你追我赶“这个游戏让幼儿知道正确跑步的姿势,和探索怎样跑得快的决窍,通过活动激发幼儿的竞争意识和团结协作共同向上的精神。 3、以“红色冲刺”游戏,进一步训练幼儿跑、跳、爬的能力,培养幼儿对信号的反应能力和动作的协调性。 4、总结性小结。 本次活动坚持以幼儿为主体,教师为幼儿创设宽敞自由活动的环境,充分发挥幼儿的自主性,鼓励幼儿积极参与活动,在活动中体验快乐,真正做到师幼交融,幼儿成为学习的主动者和成功者。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。