提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教部编版道德与法制四年级上册少让父母为我操心说课稿

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 大学生心理健康教育心得体会参考例文

    大学生心理健康教育心得体会参考例文

    其一,心理与环境的统一性。正常的心理活动,在资料和形式上与客观环境具有一致性。  其二,心理与行为的统一性。这是指个体的心理与其行为是一个完整、统一和协调一致的过程。  其三、人格的稳定性。人格是个体在长期生活经历过程中构成的独特个性心理特征的具体体现。

  • 幼儿园中班心理健康教案:心情火车

    幼儿园中班心理健康教案:心情火车

    活动准备:小朋友表情照片若干小火车 活动过程第一环节:情景导入,激发幼儿兴趣。以边念儿歌边开火车的形式,激发幼儿活动的兴趣。 1、边念儿歌边开火车入场,引发幼儿的兴趣。 2、认识心情火车。 3、让幼儿数数有几节车厢。 第二环节:师生互动说说表情。感知开心、生气、伤心的心情。第一次让幼儿找自己的照片。第二次找好朋友的照片。体现了层次的递进性。 1、坐上心情火车,请幼儿找自己的照片,说说自己的照片。 2、第一次交流,说说自己的表情,并说出原因。

  • [幼儿园大班主题教案]关心关心他们

    [幼儿园大班主题教案]关心关心他们

    二、主题目标:1.能够发现别人明显高兴与不高兴的表情,会用简单的语言和动作去关心和帮助别人,体验关心别人的快乐。2.继续体验与朋友共同游戏的快乐,知道朋友越多越好。三、活动过程:(一)引起兴趣,情感体验:1.最近,我们小一班的小朋友一直在讲讲好朋友,找找好朋友,那你们跟好朋友在一起开心,还是一个人孤孤单单开心?为什么?2.那你们开心的时候会做什么动作呢?(请幼儿来做做)我们一起来做做开心的样子。3.你们看,我上一次把你们和好朋友玩的开心的样子都拍下来了。

  • 感恩教育国旗下讲话:《心存一颗感恩之心》小学

    感恩教育国旗下讲话:《心存一颗感恩之心》小学

    本文是由编辑为您准备的感恩教育国旗下讲话:《心存一颗感恩之心》小学,请大家参考!感恩教育国旗下讲话:《心存一颗感恩之心》小学老师们、同学们:各位老师,同学们:早上好!今天我讲话的题目是:心存一颗感恩之心。俗话说“谁言寸草心,报得三春晖”,“滴水之恩,当涌泉相报”,知恩图报是中华民族的传统美德。同学们,我们要懂得感恩。我们要感激父母,感谢他们给了我们生命,感谢他们搀扶我们走好每一步人生之路,为我们搭建快乐成长的舞台。我们要感激老师,感激他们传授我们知识,让我们拥有智慧、拥有克服困难的力量和奋发图强的信心。我们也要感激在我们成长道路上循循善诱的长辈,感激陪伴我们成长的朋友们。“感恩之心”可以以不同的方式化为“感恩之行”,作出一些我们的回报。

  • 国旗下的讲话稿:学习方法

    国旗下的讲话稿:学习方法

    演讲稿频道《国旗下的讲话稿:学习方法》,希望大家喜欢。上星期才完成中段考,星期五还去了春游,今天开始试卷讲评了……现在才讲学习方法是不是有点为时过晚?考试前一两个星期讲讲会更有针对性吧!这观点不致可否,听起来还蛮有道理。但是掌握学习方法,使学习更有效率只是为了考试?当然考试是检测学习效果不可或缺的途径,然而考试不是学习的唯一目标!时至今日,21世纪的世界,学习是一种生活方式!作为一名学生,校园生活该是一种怎样的学习呢?今天在这里只简单的介绍两点,不要轻视这两点,那是学习的武林秘笈!首先是“献丑”。献丑?浓妆艳抹地把丑遮起来还来不及,现在还要献丑?请问当我们身体病了,是不是要找医生看呢?吃药把病治好了,身体也就好起来了。这是很简单的道理。把自己不舒服的情况跟医生讲不正是一个献丑的过程吗?那么,我们的学习,不懂的、理解错误的知识不正是学习上的“丑”,学习上的“病”吗?要解决这些问题不献丑,老师如何能对症下药?不过献丑也要讲究技巧。不少的同学,测验考试后,就拿着做错的题目走到老师跟前,说:“这题我做错了,不明白,不会……”

  • 国家宪法日国旗下的讲话稿

    国家宪法日国旗下的讲话稿

    导语:在国家宪法日,大家会带来怎样的国旗下讲话呢?以下是小编整理的国家宪法日国旗下讲话,供各位阅读和参考,希望对大家有所帮助。国家宪法日国旗下讲话稿【一】  敬爱的老师们,亲爱的同学们:今天,我站在庄严的国旗下,想跟大家聊聊法律。有人说,法律是明媚的阳光。阳光照耀之处,耕地、河流、森林、草原、湿地、野生动物等等都有相应的法律保护着,法律的保护使天更蓝、草更绿、水更清,大自然更加和谐。有人说,法律是一件安全的外套。人从一生下来开始,法律就对幼儿、小孩受教育、婚姻、生命财产不受侵害、社会医疗保障、老年抚养等等都作了明确的规定,法律的保护让我们快乐地成长,安全地拥有,幸福地生活。有人说,法律是行动的指针。像我们开口不能骂人,伸手不能打人一样,我们的言行都要受到法律的约束,同时也受到法律的保护。大人们每做一项工作,每签订一个合约,都要涉及到很多法律条款,法律使我们的社会运行有序,和谐相处,健康发展。12月4日是中国的“宪法日”。之所以确定这一天为“宪法日”,是因为中国现行的宪法,在1982年12月4日正式实施。宪法到底是什么法?宪法是国家的根本大法,将宪法实施日定为“宪法日”,意义十分重大。XX年11月1日十二届全国人大常委会第十一次会议经表决通过了全国人大常委会关于设立国家宪法日的决定,设立每年12月4日为国家宪法日。

  • 读宪法国旗下讲话稿

    读宪法国旗下讲话稿

    关于宪法的定义,Wheare追随Dicey,认为广义的宪法是确立和控制政府的规则的集合体,这里说的政府是大政府,而非单纯的行政。那么怎么写一份演讲稿呢?下面和小编一起来看看吧!读宪法国旗下讲话稿【1】  宪法是国家的根本大法。宪法规定了一个国家社会制度、国家制度、国家机关组织和活动的基本原则,规定了公民的基本权利和义务等重要内容。宪法具有最高的法律效力,是制定其他法律的依据。也许有同学会说,宪法好像与我们现实生活没有交集。其实不是的,根据宪法,国家有关部门制定出了具体的法律法规和各项规章制度,如升国旗时,《国旗法》对我们的行为作出了具体要求;《中小学生日常行为规范》对我们的学习和品德养成提出了要求;当我们走进社会,《未成年人保护法》和《预防未成年人犯罪法》为我们保驾护航;当我们在消费遇到问题时,可以依据《消费者权益保护法》维护自己的合法权益。总之,我们中学生生活的各个领域,都与法律相伴。天高任鸟飞,海阔凭鱼跃。我们常常用这句话来表达自己对自由的向往。对鱼儿和鸟儿的自由羡慕至极。但是我们忘了鱼儿离不开水,鸟儿离不开天空。所以不存在绝对的自由。洛克说:“法律的目的不是废除或限制自由,而是保护和扩大自由……哪里没有法律,哪里就没有自由。”

  • 地方部门病媒生物防制工作计划

    地方部门病媒生物防制工作计划

    (一)灭蟑螂工作。  1、开展防蟑工作。堵洞抹缝,对宜孳生蟑螂的场所及部位的墙缝、门窗框缝、地板缝和各类管道空隙等处进行堵洞,清除蟑迹、去除卵鞘,防止蟑螂孳生、栖息。  2、开展灭蟑活动。适时开展统一灭蟑工作,针对不同场所和对象购置不同药物,在灭前开展培训,整治环境,灭中加强检查,重点抓“八查”暨一查桌、二查柜、三查椅、四查缝、五查下水道口、六查洗涤池、七查食品加工案、八查杂物堆,灭后及时做好清理和统计工作。

  • 大学团支部公约以及工作制度(修订)

    大学团支部公约以及工作制度(修订)

    严律于已,自觉遵守安徽工程科技学院《学生手册》各项管理条例;  2、团支部各成员务必有着“班荣我荣,班耻我耻,团结一致,勇往直前”坚定观念;  3、科学作息,做到团内各项活动不迟到、早退、缺席、参加校内外活动,以不影响损害团支部形象为原则;  4、团结友爱,团支部各成员必须要互帮互助,共同奋进,加强团内凝聚力;  5、争做榜样,团内各成员在综合素质上积极竞比,同时也相互学习,学长补短,争做优秀个人;  6、树立全局观,团内各成员在校处理各项事务时,必须先以集体利益为主,坚决杜绝为了个人之私而损害团支部利益现象的出现;

  • 学校安全隐患整改、重点部位安全制度

    学校安全隐患整改、重点部位安全制度

    2、学校建立安全隐患整改工作领导小组,由校长任组长,全体校委员会成员任成员,负责校园的安全排查、整改。学校的每一位教职工均有发现、报告和处置(能力范围内)安全隐患的义务。  3、加大安全隐患排查整改力度,建立校园安全隐患台帐,发现问题及时整改,责任到人,确保师生生命安全。在整改期限内未落实的,经校务会研究决定,追究相关责任人的责任。对于因为排查整改不及时造成重大安全事故的责任人,将按有关法律进行严肃处理。

  • 中学领导干部“五个一帮带联系”制度

    中学领导干部“五个一帮带联系”制度

    一、“五个一帮带联系”的内涵  学校领导班子成员和各处室中层干部每人联系一个年级组,深入一个班级,指导一个教研组,帮扶一名青年教师,转化一名“学困生”。  二、具体工作要求  .联系一个年级组。联系年级组的干部要经常深入年级组,了解年级组工作情况,了解教师的工作情况和学生的学习情况,参加年级组全体教师大会、班主任工作会议,对年级的教育教学工作进行指导。参加年级组全体学生大会,对学生进行教育和鼓励。参加年级组家长委员会和家长会,了解家长对学校工作的意见和建议,对家庭教育进行指导和帮助。

  • 美术教学心得体会

    美术教学心得体会

    1、 走进学生群体,了解成长特点 做为一名美术教师,深深知晓教孩子美术技能并不是把他们培养成美术家,而是陶冶情操。因此,我们要多接近孩子,了解他们的内心世界,了解他们的思想认识水平,并做到尊重每个人的思维方式和表现特点。学生做画有几个明显特点:1用色大胆;2造型不准确,带有很多印象成分

上一页123...304305306307308309310311312313314315下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。