第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用。数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组, 此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
它位于三角函数与数学变换的结合点上,能较好反应三角函数及变换之间的内在联系和相互转换,本节课内容的地位体现在它的基础性上。作用体现在它的工具性上。前面学生已经掌握了两角和与差的正弦、余弦、正切公式以及二倍角公式,并能通过这些公式进行求值、化简、证明,虽然学生已经具备了一定的推理、运算能力,但在数学的应用意识与应用能力方面尚需进一步培养.课程目标1.能用二倍角公式推导出半角公式,体会三角恒等变换的基本思想方法,以及进行简单的应用. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换的技巧进行三角函数式的化简、求值以及证明,进而进行简单的应用. 数学学科素养1.逻辑推理: 三角恒等式的证明; 2.数据分析:三角函数式的化简; 3.数学运算:三角函数式的求值.
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
学习过程:一、自主预习课本P175——186的内容,独立完成课后练习1、2、3、4、5后,与小组同学交流(课前完成)二、回顾课本,思考下列问题:1.SAS定理的内容2.ASA定理的内容3.SSS定理的内容4.几何证明的过程的步骤
活动准备: 教具:5、6、7、8、9、10的实物卡片共6张。 学具:幼儿用书,铅笔每人一份。 活动过程: 1、集体活动。 (1)目测数群,感知10以内的数。 教师分别出示实物卡片,引导幼儿观察图片,说一说:图片上有什么?有多少?L你是怎么看出来的?教师带领幼儿一一点数,并说出物体的总是。 (2)学习按群测数。 教师启发幼儿用“合起来”的方法说出总数,想一想:还可以用什么方法很快能知道有多少个x x?说一说:你们觉得这几种方法,哪一种方法最快?为什么?组织幼儿讨论得出结论。 教师带领幼儿看5的实物卡片,启发幼儿用“合起来”的方法说出总数。教师引导幼儿观察6——7的实物卡片,鼓励幼儿自己用这种办法说出总数。教师借助手势,启发幼儿用手画圈表示总数。
1 . 品味文章重点词语、句子或段落。 指导学生找出自己认为精彩、重要的词语、句子和段落,然后用旁批写下自己的看法。 词语例:“我们已经点开船,在桥石上一磕,退后几尺,即又上前出了桥。于是架起两支橹,一支两人,一里一换,……”“点”“磕”“退”“上”“架”等几个动词,将少年们开船时的动作程序以及合作划船的情状表述得颇为详细,显示了他们熟练的驾船技巧和勤劳肯干的品格,也折射出他们去看戏时的愉快心情。 句子例:“那航船,就像一条大白鱼背着一群孩子在浪花里蹿,连夜渔的几个老渔父,也停了艇子看着喝采起来。”这一句用一个富有童话色彩的比喻,反映了儿童富于幻想的 特点和愉快的心情。写老渔父的喝彩,是通过旁观者的赞美来衬托孩子们的驾船技术。 段落例:月夜行船一段(第11段)的景物描写分别从色彩、声音、视觉、听觉、嗅 觉各个侧面着笔,恰如多重奏管弦曲,给人以十分丰富的感觉,景物的立体感由此产生。
有人说:人的一生有三天:昨天、今天和明天,这三天组成了人生的三步曲。但我说,人的一生只是由无数的今天构成的,因为不会珍惜今天的人,既不会感怀昨天,也不会憧憬明天。乐观的人,喜欢描述明天的美好前景;悲观的人,总担心明天会发生什么不测。但生命的内涵只在于今天,生命是宝贵的,它是由一分一秒的时间堆积而成的,珍惜今天就是珍惜生命,荒废了今天就是荒废了生命。昨天已是过眼云烟,再也无法挽留。如果在昨天,你为取得了一点骄人的成绩而沾沾自喜,或是因为做错了一件事情而愁眉不展,那么你就永远陷进了昨天的泥潭里。同时,你今天的时间也会从你的沾沾自喜或愁眉不展中悄悄流逝。每个人都会乘坐“今天”这班车驶向明天,一天一个驿站,一天一处风景,趁着明天还未到来,我们就应抓住今天,这样等待着你的才会是果实累累的明天。
尊敬的老师、亲爱的同学们:大家好!战鼓擂响,旌旗飞扬,高考的战火已经熄灭;六月流火,放手一搏,中考的眉眼也在我们夜以继日的发奋中一天天清楚。在本周即将到来的中考眼前,同学们,我们应该时刻记住,只有拼出来的美丽,没有等出来的辉煌。没有焚膏继晷,就没有苦尽甘来;没有挑灯苦读,就没有明日的欣慰;没有“不怕远征难”的坚韧,梅州户外饮水尚需知其源,回看这一千多个日昼夜夜,师长的鼓励与呵责永远如同漫漫永夜中的灯火,如同遍天阴霾中的阳光,让我们在前进的路上看见希看,看见前方晴朗的天。
10.(12分)科技发展是大国崛起的重要因素,崛起后的大国影响着世界格局的发展演变。阅读下列材料,回答问题。材料一:宋代是中国古代科学技术发展史上最辉煌的时期,几乎在所有中国传统科学技术领域都留下了新的记录。举世闻名的四大发明中有三项完成于两宋时期……为推动世界历史的进程和世界文明的发展作出了巨大贡献。——杨宁一主编《历史学习新视野新知识》 材料二:“如果人们把整个人类社会的演进用12个小时来表示,那么现代工业时代只代表最后5分钟,而不是更多。”英国是最先发生这个5分钟事件的地方,工业革命可能是最初的关健几秒钟。正是这个革命使现代文明降临人间,人类开始从农业文明向工业文明过渡。——马克垚主编《世界文明史》
10.(12分)科技发展是大国崛起的重要因素,崛起后的大国影响着世界格局的发展演变。阅读下列材料,回答问题。材料一:宋代是中国古代科学技术发展史上最辉煌的时期,几乎在所有中国传统科学技术领域都留下了新的记录。举世闻名的四大发明中有三项完成于两宋时期……为推动世界历史的进程和世界文明的发展作出了巨大贡献。——杨宁一主编《历史学习新视野新知识》材料二:“如果人们把整个人类社会的演进用12个小时来表示,那么现代工业时代只代表最后5分钟,而不是更多。”英国是最先发生这个5分钟事件的地方,工业革命可能是最初的关健几秒钟。正是这个革命使现代文明降临人间,人类开始从农业文明向工业文明过渡。——马克垚主编《世界文明史》
【甲】环滁皆山也。其西南诸峰,林壑尤美,望之蔚然而深秀者,琅琊也。山行六七里,渐闻水声潺潺而泻出于两峰之间者,酿泉也。峰回路转,有亭翼然临于泉上者,醉翁亭也。作亭者谁?山之僧智仙也。名之者谁?太守自谓也。太守与客来饮于此,饮少辄醉,而年又最高,故自号曰醉翁也。醉翁之意不在酒,在乎山水之间也。山水之乐,得之心而寓之酒也。
行自我保护。这是很有必要,也很有意义的。 时下,进入秋季,干冷天气占主导,空气中的水分渐渐减少,在这样的季节里,如果防范不当就容易发生火灾事故。学校是人员高度集中的公共场所,在突然遇到火灾等突发紧急情况时,如果不能做到有组织地迅速撤离,很容易发生拥挤、踩踏等安全事故。 今天,我们在消防安全疏散演练环节中,全校师生能够按照学校的统一指令和要求,较快地撤到了指定地点,基本上达到了疏散演练的要求,没有发生拥挤等不安全的事故。安全疏散主要是做到有序和迅速。有序就是有组织有秩序,不拥挤、不抢先。迅速就是速度要快,事故发生时,时间就是生命,速度是建立在有秩序的基础上的。今天的演习,从听到警报到师生全部撤出教学楼共用了2分02秒,我们在亲身体验中增强了消防知识,学会了安全逃离火灾现场的方法,对火灾危险也有了更加深刻的认识,希望同学们真正学懂并记在心里。 其次,在灾难来临时最大的危害是心理恐慌,因为恐慌、无自救的常识,而造成较大伤害。只要保持冷静、有序,灾害是可以减小的。同样的道理,我们在教学楼、教室等公共场所,最重要的是保持冷静、有序,不恐慌、不尖叫、不起哄、不拥挤,就可以最大限度减少事故,保护生命。这些都是逃生上的安全知识,掌握了这些逃生知识,我们就能成功地撤离了。而且,对于我们学生来说,如果遇到灾情请不要慌张,有我们老师在,老师会在第一时间教你们,带领你们逃脱危险区,刚才的成功撤离就是我们全体老师一起行动的结果。以后,如果真的遇到什么大的还是小的灾害,就可以按照今天的演练办法逃生。 同学们,今天,我们是幸运的,但是谁能保证危险不会在我们身边发生呢?在校园中,需要紧急疏散的机率并不大,但我们必须“居安思危”,做好准备,减少受伤的机会,同学们时刻要有安全意识。 最后,祝愿所有的学生能远离伤害,自由幸福地成长,祝愿所有的老师远离危险,健康快乐地生活。
尊敬的各位老师、亲爱的同学们:大家早上好!时间过得可真快,转眼之间,已经是4月份了.再过几天,本周的星期五就是一年一度的清明节了.清明节开始于春秋战国时代,是中国汉族的节日,为中国二十四节气之一,时间约在每年的阳历4月5日前后。清明节后雨水增多,大地呈现春和景明之象。这一时节万物“吐故纳新”,无论是大自然中的植被,还是与自然共处的人体,都在此时换去冬天的污浊,迎来春天的气息,实现由阴到阳的转化。很快,就在4月5日,又将是一年清明节了。清明节不仅是24节气之一,还是一个祭祀祖先,寄托哀思的日子。也许最近一段时间,每一家人,都是在长辈的带领下,举家祭扫祖先的灵墓,目的是在传承每一家生生不息的家风和美德;新中国诞生后,清明节又被赋予了一个特殊和重要的意义,那就是用祭扫烈士墓,缅怀革命先辈...
端午节,门插艾,香满堂,吃粽子,洒白酒,龙舟下水喜洋洋。这些,都是曾经端午节上最热闹的活动,然而,随着时代的变迁,社会节奏的加快,外来文化的大举入侵,中国人不再眷顾流传几千年的中国传统文化,而是将目光转向了“圣诞节”“愚人节”这样的节日,面对这种现状,我们不得不感到悲哀,发出“端午节是否不再姓“中”这样的疑问。当我们还沉浸在西洋节日的欢声笑语中时,据可靠消息说“亚洲某国准备向联合国教科文组织申报端午节为本国的文化遗产,目前已将其列入国家遗产名录。 听到这种消息,中国人除了惊讶只有尴尬,这不仅仅是一个传统节日的得失,不仅仅是少了几项庆祝活动,更重要的是,这是中国的传统节日,文化内涵丰富,留存着华夏民族独特的文化记忆,每过一次传统节日,就是中华民族凝聚力和向心力的一次加强和洗礼,如今,这个拥有XX多年历史的传统佳节眼瞅着即将成为他国的国家遗产,我们将有多么尴尬?无庸讳言,这些年来,我国的传统节日,似乎总离不开吃。端午节吃粽子,清明节吃青团,元宵节吃汤圆,中秋节吃月饼,春节更不在话下——大鱼大肉让你吃到不想吃。农耕社会对饥饿的恐惧,形成了我国传统节日最鲜明的风俗——吃。如今,满足了温饱需求的人们正在奔向全面小康,什么时候都有的吃,想吃多少都可以,传统节日的吸引力一下子失去了特有的魅力。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。