有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得14521.1x-1200x=20,解得x=6.经检验,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
1、教师出示《人学通知书》,并提出以下问题:(1)同学们,你们在入学前收到入学通知书了吗?(2)我们每一个人都收到了一份《入学通知书》,我们学校的吉祥物也收到了,看视频回 忆自己的上学心情。2、教师播放歌曲:同学们,我们一起来听一首好听的歌曲。(播放课件:歌曲《上学歌》 板书课题《开开心心上学去》【完成目标一】环节二 共同回忆 感受快乐活动 2 共同回忆,感受快乐小朋友们,你们还记得我们学校的开学典礼吗?你看到了什么?听到了什么?感受到 了什么?【完成目标二】环节三 分享交流 拓展延伸 五、熟悉新环境1、播放课件,谈心情:老师课前准备了学校各处的照片,现在用幻灯片展示给大家看一看。 大家说一说,这么美丽的地方你喜欢吗?你知道可以在这些地方做什么吗?
教学目标:【知识与能力目标】了解生活中的危险行为,并形成主动规避安全风险的意识和能力。【过程与方法目标】通过课本知识及相关案例帮助学生树立更完善的安全意识。【情感态度价值观目标】认识到生活中的危险是可以积极行动去避免的,培养安全意识和珍爱生命的观念。然后就是教学中的重难点分析教学重难点:1.教学重点:通过本课的学习认识日程生活中的危险行为并主动避免。2.教学难点:树立安全第一的意识,培养应对危机情况的能力。在对教材整体分析完之后,我们需要老师学生在课前做哪些准备;课前准备:学生进行课前预习,教师制作多媒体课件,准备相关材料。二、教学过程我打算从三个方面导入新课教学过程:导入新课情境导入:如果遇到危险我们该怎么办?(提问学生)
4.这种合理安排时间的方法不仅仅适用于星期天,寒暑假的时候也可以用这种方法合理安排我们的时间。 三、好经验共分享(提前布置孩子回家搜集,用一句话写在纸上)1.要想成为真正的学习的主人,除了合理安排时间,还要掌 握一定的学习方法,课前老师让同学们把自己的学习方法写在了苹果卡片上,请同学们拿出这张卡片,PPT 出示交流要求:( 1)请同学们在小组内交流汇报你的学习方法。 ( 2)选 出一个最好的方法来汇报。 ( 3)将剩下的学习方法粘到绿色 的卡纸上。2.小组汇报交流课前整理在苹果卡片上的学习方法。 3.师补充学习方法,分别出示23 页四幅图。4.学习的方法有很多种,但适合自己的方法才是最好的方法。四、总结通过这节课的学习,我们懂得了要合理地安排时间,并且了解了更多的学习方法,今天老师就把这棵苹果树送给你们,课后的时候老师建议每个人都到苹果树前看一看你最喜欢 哪种学习方法,并且把这种方法运用到我们的学习中,老师 相信你们都会成为真正的学习的主人。
(活动一)祝福热线学生自由分角色扮演其亲人、朋友等,让他们之间相互赠送祝福。整个过程以学生为主体,在这种动态生成的课堂中,学生能够全面参与,建构属于自己的知识能力、社交能力,有利于他们形成内化的道德品质。群体互动:(活动二)特别行动采用小组合作学习的方法,模拟过年的活动,如:“帮妈妈布置房间”、“访亲拜友”、“采购年货计划”、“春节慰问活动”、“有趣的游艺活动”等,让他们分组讨论,确定主题,再进行准备,制定计划或排练小短剧。这一设计重在培养学生的合作精神和创新意识。4、培养能力,拓展延伸。借助绘本故事〈〈团圆〉〉,讲述了农村儿童的新年故事,其中暗含了很多传统习俗。绘本中浓浓的团聚亲情和淡淡的离别思绪。给学生带来了独特的春节感受。在作业设计上,为了让学生化知为能,迁移应用。让学生回家了解过年的风俗习惯,对亲朋好友相互赠送祝福,培养他们辨别是非的能力,提高对社会现象的辨别,分析能力。
(3) 学生 民主评议 ,再由该位明星 把自己的名字 写在相应的星上 , 贴在圣诞树上 。(4) 圣诞老人颁发明星 证书 ,送上小礼物 ,并送上新年寄 语。(5) 学生畅谈 :你觉得这些小 明星的哪些地方最吸引你 ?你想怎 么 做,争取在接下来的评比中能成功?2 总结 :孩子们 ,能正确地认识自 己和别人优点,取长补短这是 人生最大的收获 ,也是最有意义 的新年礼物。活动四:收获哪里来一一感恩帮助过 自己的人l过渡 :看来 同学们收获的新年礼物还真不少 。你们想过没有, 这些收获是怎 么来的?除 了 自己的努力,还有 哪些人帮助过你 吗?2 学生互 动 :小组内说一说帮助过自己的人和亭 ,写在纸条上 , 放进爱心信箱 。3. 即兴发言:学 生从爱心信箱中随意抽取爱心卡 ,读一读 ,分享 那些曾经 给予他人帮助过的人和事。4. 小结 :让我们把这个爱心信箱留在班级 ,每一次得到他人的帮 助,都可以记录下来 ,投进信箱 ,让爱心充满校园 。活动五 :爱的回报一一大家帮助我成长进 步 ,我该如何回馈 ,用 行动感恩
二、说教法和学法。根据以上教材的分析及一年级的小朋友刚刚入学,在情感态度、行为习惯方面都很幼稚,学生自控能力比较差,有意注意的时间较短,但学生好奇心强、活泼好动,善于模仿的特点,特确定以下教法和学法:1.教法实践体验法2.学法活动体验法3.教学准备课件,图片等三、说教学过程。(一)导入。歌曲《每当我轻轻走过老师窗前》(二)基础训练:填一填。早上遇见老师,我会说:“ !”早上遇见同学,我会说:“ !”老师:上课,同学们好!学生:老师:下课,同学们再见!学生:(三)能力提升:画一画,你最喜欢的老师,请好朋友猜一猜。这是我们的( )老师。(四)小制作:我要学着制作一张精美的贺卡,写上最美的语言,祝福我最喜欢的老师。
3.安全游戏体验:分组选择老师准备的活动物品中选一样物品开展小组活动。教师引导学生上台展现安全游戏,孩子们在体验中使课堂气氛更活跃,学生在课堂活动中知道下课后合理安排好时间,安全游戏。【设计意图:通过辨析学生在课间经常玩的游戏或活动指导学生行动,再通过活动实践巩固认知,在学生活动中突破教学难点,真正体现了鲁杰教授德育生活化理论。】(四)活动总结(延伸)1.出示课间儿歌,读儿歌强化所得。2.让学生说说本节课的收获?3.总结:下课铃响了,请同学们要合理安排自己的课间活动,然后选一种自己活动和同学一起玩。玩的时候要守规则、讲文明、注意安全,这样才能玩得开心快乐哟。【设计意图:教师根据课堂情况小结,孩子们在情景解说中“学了就去做”,学生在听到铃声后选自己喜欢的活动,快乐安全游戏,真正体现了学以致用的效果。】
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。