2、发展幼儿身体动作的协调性,增强幼儿的体质。3、通过游戏引导幼儿走过平衡木、渡过攀岩墙,发展幼儿平衡、攀爬、协调等基本动作。 游戏准备:攀岩墙一面、平衡木一条、荡木一条、跳绳两根、大皮球若干。
活动过程: 《我爱我班》主题班会现在开始: 1、讨论“什么叫班级?” 2、讨论个人与班级的关系. 我们每一个人与班集体都是融为一体的,是不可分离的。学习差、思想差、行为差的同学离不开集体的帮助,好同学要想在集体里较好成长,更离不开老师细心的指导,同学们的互相启发促进和大家共同创造的良好集体氛围、学习环境。请听故事:《骄傲的桃花》 春天来了,微微轻风,绵绵细雨,大地上万物复苏,到处都可以见到生机勃勃的景象。 花开的最茂盛、美丽的就是桃花了,每当人们看到这棵桃树,总是赞赏到:“多美啊!”忍不住去闻一闻,“多香啊!” 在一次一次的称赞声中,有一朵花有些骄傲了,她想:“在这棵桃数上,就数我最香了。我不跟那些花在一起,就一定会更突出。”在左右的那些花劝到:“你可不要单独行动呀!那是危险的事啊!”可是那朵骄傲的小花却说:“我的危险与你们不相干!”她又想:我如果离开这,人们一看到我,一定会给我更大的赞美,而且我还能得到自由。不一会儿,风来了,这多花借着风的力量,使劲挣脱了出去。 谁知,太阳马上晒干了这多花,她使劲的喊“救命”,可是她再也不能回到树上去了,后来她终于凋谢了。 老师小结:古代有一位学者问他的学生:“一滴水怎样才能不干涸?”学生们面面相觑回答不出来。最后学者的答案是:“把它放进大海中去。”刘越同学的周记告诉我们:花离开了滋润它成长的大树就会调谢,人,离开了班级就失去了智慧和力量的源泉,就不能成长、进步。所以个人不能离开集体。如果一个班级好比是一座百花园,那么每一个同学就是其中一朵花。
二、 讲评要有侧重,抓准学生的薄弱环节 教师备好试卷,备好学生之后,要切中要害分析学生在知识和能力方面的薄弱环节,找出考试中出现的具有共性的典型问题,针对导致错误的根本原因及解决问题的方法进行讲评,才能真正解决学生存在的问题,因此试题的讲评应该有所侧重,要有针对性。在讲评试卷时,并不一定按照试题的顺序逐题讲解,而是有针对性的将试题重新组合,侧重讲解,提高效率。 1.侧重抓难点 有了课前的统计数据,教师很容易把握住学生的难点所在,即那些具有代表性的错误试题,教师们可进行引导、分析讲解,由于学生具有迫切的求知欲望,课上学生也会表现得更为热情高涨。这样既节省了时间,又提高了效率,取得了较好的教学效果。
活动目标:1、通过购买礼物这一活动,初步尝试合理安排钱币的方法。2、体验购物的乐趣。活动过程:1、谈话导入:新年马上就要到了,熊猫奶奶邀请我们去做客。
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
判断下面抽样调查选取样本的方法是否合适:(1)检查某啤酒厂即将出厂的啤酒质量情况,先随机抽取若干箱(捆),再在抽取的每箱(捆)中,随机抽取1~2瓶检查;(2)通过网上问卷调查方式,了解百姓对央视春节晚会的评价;(3)调查某市中小学生学习负担的状况,在该市每所小学的每个班级选取一名学生,进行问卷调查;(4)教育部为了调查中小学乱收费情况,调查了某市所有中小学生.解析:本题应看样本是否为简单随机样本,是否具有代表性.解:(1)合适,这是一种随机抽样的方法,样本为简单随机样本.(2)不合适,我国农村人口众多,多数农民是不上网的,所以调查的对象在总体中不具有代表性.(3)不合适,选取的样本中个体太少.(4)不合适,样本虽然足够大,但遗漏了其他城市里的这些群体,应在全国范围内分层选取样本,除了上述原因外,每班的学生全部作为样本是没有必要的.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
(一)引入课题。 (二)幼儿自由排图讲述。 1.发给幼儿每人四张图片。师:这里有几张图片?每张图片讲什么? 2.师:请你们把图片排好顺序,编成一个故事。 3.幼儿排图讲述,教师巡回引导。
一、谈话:我爱洗澡 1.教师:天气越来越热了,你们每天洗澡吗?为什么要洗澡?你们会不会自己洗澡?洗澡有哪些好处? 2.教师:洗澡时,需要哪些东西帮忙? 二、认一认,说一说:各种各样的沐浴用品 1.请幼儿回忆并简单地说说洗澡的过程。 2.教师向幼儿展示各种沐浴用品,请幼儿说说他们的名称和用途。教师播放课件【图片欣赏】。 教师:你还知道哪些沐浴用品?
一、心态调整。 首先,熟知盲点。即了解初高中语文课标的要求差异及变化,做到心中有数,明确衔接过渡的着力点。初、高中语文,考查的重点基本上聚焦在文言文阅读、现代文阅读、诗歌鉴赏、语言运用和作文这五个方面。与初中语文相比,高中语文学习的难度明显在增加了。其具体变化情况简要归类如下: ①语法修辞进考查要求。初中对语法、修辞、文言文词法、句法等知识,侧重于了解,教学中淡化且不作为考查内容;而在高中则重在运用,对语言知识的要求较高,教学中强化且作为重要的考查内容。 ②诗歌阅读增加了难度。从初中的了解到高中的学习,从初中的重在考查积累,到高中强化理解分析,体现了初高中诗歌学习的变化。
2、 培养幼儿意志。二、活动重点难点: 幼儿在活动中的平衡能力。三、材料与环境创设 户外草地、高跷
一、导入新课 京东北运河畔,朴实的民风孕育了朴实的人。他们重情重义,爽朗豪放,在他们身上,有着中国农民的人情美。在充满了浓浓乡土气息的语言描写中,他们—小男孩,何满子,爷爷何大学问,奶奶一丈青,是那样的鲜活灵动!看哪,他们正向我们走来。 二、预习检查 1、作者及题解: 刘绍棠(1936~1997)当代作家。河北通县人。1949年读中学时开始发表短篇小说。1951年到河北文联工作。中年,阅读大量文学名著,深受孔梨作品熏染。翌年发表成名作—短篇小说《青枝绿叶》,他的.《蒲柳人家》获首届全国优秀中篇小说二等奖。
师生互动,课堂小结1.画频数分布直方图的一般步骤:(1)计算最大值最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.2.直方图与条形图的区别:直方图的各长方形通常是连续排列中间没有空隙,长方形的宽表示各组距,高表示频数,它反映的是数据的分布情况;条形图一般不连续排列,中间一般有间隙,长方形的高表示频数,宽没有什么特殊的意义,只表示数据的一种类别.3.频数折线图的各点的位置:起点是向前多取一个组距,在横轴上取这个组距的中点即可,中间各点取各小长方形顶部宽的中点(组中值),末点是向后多取一个组距,在横轴上取这一个组距的中点即可.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。