版块2、建立1毫米的长度观念(我准备组织学生进行如下活动)(1)让学生回忆生活中哪些物体的长度或厚度大约1毫米。(2)我借助1分硬币、电话卡等让学生明白这些东西的厚度大约1毫米。(3)让学生闭眼想象并用手势表示1毫米的长度。(4)让学生想想生活中还有哪些物体的长度、宽度、厚度大约1毫米。(5)用手势表示2毫米、5毫米、10毫米的长度。(6)说一说,测量生活中哪些物品的长度一般用毫米做单位。(7)完成p3做一做,让学生体验测量的过程。设计这一系列的活动,目的是使学生借助实物进行类比,帮助学生更好的建立毫米这一长度单位的表象,使学生对毫米的认识逐步深入,从而突破教学难点。这样不仅提高了估测的能力,而且还能沟通数学与生活的联系,使学生进一步体会数学来源于生活,数学又能为解决生活中的问题服务的思想。
一、说教材这节课主要是使学生进一步认识钟面和掌握看钟表的方法,认识时间单位时和分,和孩子一起探究出时和分之间的进率是60,会认读几时几分。进一步建立起时间观念。根据学生已有知识经验和数学认知的特点,本节课拟定了以下三个维度的教学目标:1、(知识)认识钟面及时间单位“时”和“分”,初步体会“时”和“分”的实际意义,理解1时=60分;2、(能力)结合具体的生活情景,会认读钟面上的时刻;培养学生观察、分析、比较的能力3(情感)建立时间观念,培养学生主动探索的精神和合作学习的能力。教学重点:认识钟面及时间单位“时”和“分”,初步体会“时”和“分”的实际意义,会认读钟面上的时刻。教学难点:时间单位比较抽象。理解1时=60分。认读几时几分。二、学生分析学生天天跟时间打交道,也已经会认整时,但时间单位不像长度单位、质量单位那样容易用具体的物体表现出来,比较抽象,再加之相邻时间单位的进率是60,所以建构起来是有些难度的。
⑴照相现在高科技产品已经越来越普及。利用学生对高科技产品的好奇心,我带来了一部数码照相机。我对学生说:“你们想拍照片吗?”学生会情绪高涨“想!”“那你们可要听仔细了。我请一位同学来帮另一位同学来拍照片,拍出来的照片要既能看到他的正面又能看到他的侧面。其余同学判断他站的角度是否正确。”正当活动进行得如火如荼的之时,我趁热打铁,说“你们其他同学一定也很想照相吧。这样,我来帮你们拍一张合影,好不好?我想拍一张你们的正面照你们怎么站?我要拍你们的侧面照你们怎么站?我要拍你们的背影呢?(让学生根据要求站位置,使全班学生都参与到活动中。)⑵观察礼物盒我先出示一个礼物盒,对学生说:“你们想要这个礼物盒吗?先猜猜这个礼物盒最少能看到几个面?多能看到几个面?哪几个面?在哪儿可以看到?”部分学生可能会说出正确答案,而还有一部分学生可能不能很快地说出答案。
1、出示第78页例3,创设开运动会买矿泉水的情景,激发学生的学习兴趣,同时也对学生提出了要求,“谁能提出一个用乘法计算的数学问题,你会编一道应用题吗”。既培养了学生的观察能力,又让学生在具体的情境提出问题,直观地感受到生活中处处有数学。2、学生看图后能正确列式:24×9=3、学生尝试计算,计算过程中遇到困难,可以同桌商量着完成.同桌互查,反馈信息。指名板演,说出计算的顺序和过程,集体订正.这题的计算完成了吗?为什么?(还得在横式的等号后填上得数和单位)。以此培养学生观察仔细,办事严谨、认真,从不敷衍了事的好作风。6、小结:从多位数的个位乘起,个位满几十就要向十位进几,十位的积要加上进上来的数,又要向百位进位.(三)巩固练习1、完成教材下面的"做一做"中的一道题。教师巡视,且及时级予个别辅导。全班完成后,指名说出每题计算的全过程,予以共同订正。
二、编写意图:“计算工具的认识”分别介绍了计算工具算盘和计算器,还安排了有关计算工具的发展历史和现状的阅读材料。教材安排了较多的直观图战士了算盘和计算器的实际应用、算盘和计算器的结构,比较形象直观,让学生在观察和活动中认识常用的计算工具。三、教学目标:鉴于以上分析,我把本课的教学目标定位为以下三个方面:1、让生初步认识计算器,了解计算器的基本功能,会使用计算器进行大数目的计算,通过计算探索发现一些简单的数学规律,解决一些简单的实际问题。2、通过对计算器的运用,体验用计算器进行计算的优点,进一步培养对数学学习的兴趣,感受用计算器计算在人类生活和工作中的价值。3、在自主探究的学习过程中培养学生的问题意识和创新意识,在解决实际问题中,渗透节约、环保等方面意识,使学生受到思想教育。
(数学课不仅要注重新知的探讨学习,还要注重练习和应用。把书上一个个静态的毫不相关的题目通过课件制作,让它们串起来。形式多样、层次不同的练习题,既让学生巩固了所学内容,又让学生体会数学知识与生活的联系,理解“数学源于生活,应用于生活”的理念,增强学习数学的兴趣和信心。)4、归纳总结,深化新知:总结是全课的再一次升华,我是这样设计的:这节课我们一起参与学校的新学期的准备工作。新学期就要有新的气象,老师在这里祝大家在新的学期里:学习进步,快乐成长!请你用“我学会了”谈谈自己的收获。5、布置作业:为了学生在课后能够得到训练,我设计了这样的作业题:请同学们编几道像这节课我们学的除数是两位数的口算除法,考考你身边的朋友们,看看他们会不会。(通过资源库中的资源来教学,能够很好的解决教材中的重点和难点。在教学中,我利用资源库中的一些资源有效的和解决了数学问题。在课堂中,我很注意课堂资源与课外资源的有机融合。)
(一)说教材本节课是在学生基本上掌握了亿以内数的读、写方法以及比较两个数的大小和把整万的数改写成用万作单位的数后,用"四舍五入"法求近似数。这部分内容不好总结,但是与过去的旧知识联系紧密。由讲故事引入课题,进而渗透旧知,由复习省略百位、千位后面的尾数求近似数,类推到省略万位后面的尾数求近似数。这样引导,有利于培养学生归纳推理的能力。(二)说教学目标1.能正确的用"四舍五入"法求近似数。2.培养学生比较分析的思维能力,养成良好的学习习惯。(三)说重难点使学生学会如何用“四舍五入”法将非整万的数改写成用“万”做单位的近似数。(四)说教法这部分知识与旧知联系比较紧密,因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新知识的方法,培养学生的归纳推理能力。
请学生先用计算器求出各题的积,然后观察各题中相乘的两个数及所得的积,自主探索和发现积的变化规律。最后进行全班交流,教师做适当总结:这几道算式第一个乘数都是142857,第二个乘数分别是1、2、3、4、5、6,它们的得数与第一个乘数一样,都是由1、2、4、5、7、8这六个数字组成的六位数,不过各个数字所在的数位不同,但如果把这个六位数的乘数按顺时针方向排列在一个圆面上,可以发现这六个积里各数字的排列顺序是一样的,只不过起点不同:乘1的积是从最小的数“1”开始,乘2的积是从第二小的数字“2”开始,乘3的积是从第三小的数字“4”开始……,乘6的积是从最大的数字“8”开始。(2)再出示“想想做做”的第4题先出示:1×1=
二、说教学方法。建构主义认为,科学知识不是通过教师传授得到,而是学习者在一定 学习环境下,在教师和学生伙伴的帮助下,利用必要的学习资源,通过自已意义建构而获得 的,在这一理论的指导下,对本课的教学设计和学法指导作如下思考:直观教学,依据本课教学思路,联系学生生活实际,通过分组实验和(实物展示)让学 生动口、动手、动眼、动脑,充分重视学生的直接经验,感受获得。情境教学从儿童身边自然事物,生活中关于水一些有趣的现象,开始探究活动,利用一 些必要的工具,营造科学探究的学习情境,倡导让学生经历科学探究拓学习活动,在探究中 培养他们的好奇心和探究欲。
1、齐读第三自然段。思考:亚里士多德讲过什么话?伽利略对这话是怎么看的?(亚里士多德说过:“两个铁球,一个10磅重,一个1磅重,同时从高处落下来,10磅重的一定先着地,速度是1磅重的10倍。”伽利略对这话产生了怀疑)2、伽利略为什么怀疑亚里士多德说的话?他是怎么想的?(“他想:如果这句话是正确的,……这怎么解释呢?”)3、伽利略的分析,是把亚里士多德的话当作两种假设,推出两个结论。这两个结论是什么?(①把一个10磅重,一个1磅重的两个铁球拴在一起,如果仍然看作是两个球,落下的速度应当比原来10磅重的铁球慢。②如果看做是一个整体,落下的速度,应当比原来10磅重的铁球快)4.这两个结果一样吗?是什么样的结果?(不—样,是相互矛盾的)5.根据同一句话,会推出两个相互矛盾的结果,所以伽利略认为这句话是靠不住的,值得怀疑。6,他打算怎么做?(用试验来证明不同重量铁球落地的情况)
1、认真读课文,边读边想课文每个自然段都写了什么,给课文划分段落。2、学生交流段落划分,说明分段理由。3、教师对照板书进行小结:这篇课文思路特别明晰,作者开门见山提出自己的观点,明确指出“真理诞生于一百个问号之后”这句话本身就是“真理”,然后概括地指出在千百年来的科学技术发展史上,那些定理、定律、学说都是在发现者、创造者解答了“一百个问号之后”才获得的,由此引出科学发展史上的三个有代表性的确凿事例,之后对三个典型事例作结,强调这三个事例“都是很平常的事情”,却从中发现了真理,最后指出科学发现的“偶然机遇”只能给有准备的人,而不会给任何一个懒汉。
一、关于教学目标的确定:第五章的主要内容是一元一次不等式(组)的解法及其在简单实际问题中的探索与应用。探索不等式的基本性质是在为本章的重点一元一次不等式的解法作准备。不等式的基本性质3更是本章的难点。可是说不等式的基本性质这个概念既是不等式这一章的基础概念又是学生学习的难点。因此我选择此节课说课。教参指导我们:教学要注重和学生已有的学习经验和生活实际相联系,注重让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。注重“概念的实际背景与形成过程”的教学。使学生在熟悉的实际问题中,在已有的学习经验的基础上,经历“尝试—猜想—验证”的探索过程,体会“转化”的思想方法,体会数学的价值,激发学习兴趣。在教学中要渗透函数思想。运用数学中归纳、类比的方法,理解方程与不等式的异同点。
教学说明:问题(1)是借助“边边边”条件判定三角形全等的知识来解释的。因为三边长度确定后三角形的形状就被固定了,因此三角形具有稳定性。问题(2)可用多媒体展示三角形稳定性在实际生活中应用的例子。要解决问题(3),只需要在四边形中构建出三角形结构,这样就可以帮助其稳定。设计意图:通过学生动手操作,探究三角形稳定性及生活中的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。 (五)总结反思,情意发展问题:通过这节课的学习你有什么收获?多媒体演示:(1)知识方面:①三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。②三角形具有稳定性。(2)技能方面:说明三角形全等时要注意公共边的应用。
设计意图:知识的掌握需要由浅到深,由易到难.我所设计的三个例题难度依次上升,根据由简到难的原则,先让学生学会熟悉选用公式,再进一步到公式的变形应用,巩固知识.特别是第三题特别强调了运用法则的前提:必需要底数相同.为加深学生对法则的理解记忆,形成“学以致用”的思想.同时为了调动学生思考,接下来让学生进入反馈练习阶段,进一步巩固记忆.4、知识反馈,提高反思练习1(1)口答设计意图:根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解后,通过让个别同学上黑板演演,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.同时,在活动中引起学生的好奇心和强烈的求知欲,在获得经验和策略的同时,获得良好的情感体验.
4、巩固新知,拓展新知(羊羊竞技场)本环节在学生对性质基本熟悉后安排了四组训练题,为避免学生应用性质的粗糙感,以小羊展开竞技表演为背景,让学生在轻松愉快的氛围中层层递进,不断深入,达到强化性质,拓展性质的目的。提高学生的辨别力;进一步增强学生运用性质解决问题的能力;训练学生的逆向思维能力,增强学生应变能力和解题灵活性.5、提炼小结完善结构(羊羊总结会)“通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法?”引导学生自主总结。设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习。以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考。6、课堂检测,发展潜能(大战灰太狼)
一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。(2)、每一结果出现的可能性相等。3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的
6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是( )A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神. 注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解.七、学习小结:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:(1)理解确定事件与不确定事件;(2)知道不确定事件发生的可能性有大有小;(3)合理运用所学知识分析解决相关问题.目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心.(学生畅所欲言,教师给予鼓励)
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。