苏格拉底把装有毒酒的杯子举到胸口,平静地说:“分手的时候到了,我将死,你们活下来,是谁的选择好,只有天知道。”说毕,一口喝干了毒酒。(2) 苏格拉底临死前对一个叫克力同的人说了这样一番话。克力同,我告诉你,这几天一直有一个神的声音在我心中晓喻我,他说:“苏格拉底,还是听我们的建议吧,我们是你的卫士。不要考虑你的子女、生命或其他东西胜过考虑什么是公正。……事实上你就要离开这里了。当你去死的时候,你是个牺牲品,但不是我们所犯错误的牺牲品,而是你同胞所犯错误的牺牲品。但你若用这种可耻的方法逃避,以错还错,以恶报恶,践踏你自己和我们订立的协议合约,那么你伤害了你最不应该伤害的,包括你自己、你的朋友、你的国家,还有我们。到那时,你活着面对我们的愤怒,你死后我们的兄弟、冥府里的法律也不会热情欢迎你;因为它们知道你试图尽力摧毁我们。别接受克力同的建议,听我们的劝告吧。”
板书:多民族文化对中华文化的意义师:中华民族是多民族的共同体,中华文化呈现多种民族文化的丰富色彩。中华各民族的文化,既有中华文化的共性,又有各自的民族特性。它们都是中华文化的瑰宝,都是中华民族的骄傲。各兄弟民族文化相互交融、相互促进,共同创造了中华文化。各族人民对共同拥有的中华文化的认同感和归属感,显示了中华民族厚重的文化底蕴和强大的民族凝聚力。问题探究8温家宝总理在美国会见华侨时满怀深情地说,中国已解决了香港问题和澳门问题,洗刷了百年耻辱,现在剩下一个台湾问题,“这一湾浅浅的海峡是我们最大的乡愁、最大的国殇”。用有关知识分析:为什么“这一湾浅浅的海峡是我们最大的乡愁、最大的国殇”?生1:台湾是中国的一部分,台湾各族人民是中华民族的一部分,台湾文化归属于中华文化。生2:传统的民族文化是维系民族生存和发展的精神纽带。
环节三:多媒体继续展示石窟艺术、民族文学等,学生在感受少数民族文化成就的过程中不难得出结论:各民族文化都为中华文化作出了重要贡献,都是中华民族的骄傲。由此进入第三目“中华之瑰宝,民族之骄傲”。各族人民对中华文化的认同感和归属感,显示了中华民族厚重的文化底蕴和强大的民族凝聚力。环节四:合作探究中华文化博大精深的原因。学生调动已有历史知识储备和课前搜集的材料分组交流:历史上在思想文化方面,对诸家学说所采取的兼收并蓄的学术主张;中国文化长期吸收周边少数民族的哪些优秀文明;在对待外域文化上,中华民族是否敞开博大胸怀扬弃吸收。2、从现代找出能充分体现中华民族的文化开放心态和中华文化非凡融合力的例子。这样可增添几分时代气息,更好地服务于当下实践。
(二)课堂教学在教学中,无论是形式还是内容,都必须统一于学生的发展。从形式上说,以学生展示、思考、讨论为主,教师点拨为辅,在一定的情境与社会文化背景下,获得对传统文化的认识和理解。从内容上说,主要以福州地方传统文化为素材,围绕海峡两岸同时举办的“元霄灯会”为主线,回归到学生的生活世界,更有效地激发起学生情感,并将生活世界与知识世界衔接起来,在实际情景中分析传授相关传统文化的知识,提高学生认识和分析解决问题的能力,逐步形成对传统文化的情感和价值判断。教学过程,紧紧围绕传统文化,分为“激趣导入--活动感悟--探究思辩--升华导行”四个层次,环环相扣,逐步推进,帮助学生完成由感性认识到理性认识的飞跃。1.激趣导入良好的开端是成功的一半。德国的普克朗认为:“思考可以构成一座桥,让我们通向新知识”。因此,一开始,我就运用对比方法,进行设问,福州和西安、南京、北京一样也是历史文化名城,你们同意吗?
教师点拨:是社会主义意识形态的本质体现,是全国人民团结奋斗的共同思想基础。④建设社会主义核心价值体系的要求设置探究问题:建设社会主义核心价值体系的要求有哪些?学生自主学习教材,得出结论板书:3建设社会主义核心价值体系的要求设计意图:在掌握了内容的基础上,这一部分知识的学习水到渠成。高举旗帜科学发展板书:1、中共引领文化前进方向的旗帜是——中国特色社会主义设置探究问题:高举中国特色社会主义伟大旗帜最根本的要求是什么?学生自主学习,回答问题板书:2高举中国特色社会主义伟大旗帜,最根本的是坚持中国特色社会主义理论体系。教师继续追问:这一理论体系的基本内涵是什么?能否举例说明这一理论体系有什么特点。学生讨论,教师点拨:这个理论体系,坚持和发展了马克思列宁主义、毛泽东思想,是马克思主义中国化最新成果。中国特色社会主义理论体系具有强大的生命力、创造力、感召力,是不断丰富和发展的马克思主义
设计意图:使同学从各届奥运会会徽的设计上看各国文化,让学生体会不同会徽体现的不同的民族文化,了解不同民族的文化特色,感悟文化多样性的价值,使学生产生情感认同,从而突破难点。探究活动5:教师多媒体呈现中法文化年的flash,显示中国到法国举办中国文化年的图片,比如:在法国街头出现了中国的京剧脸谱,中国孩子玩的风车,中国的大熊猫。出示法国到中国举办文化年的图片,比如:法国在北京举办的音乐会,法国空军的飞行表演等。学生讨论:中法文化年的举办对中法两国来说有什么现实意义?探究活动6:播放理查德.克莱德曼演奏的《梁山伯与祝英台》的视频讨论:(1)此曲吸引你之处在哪里?(2)由此可见,对待文化差异的正确态度是什么?活动5和活动6的设计意图在于让学生懂得,面对开放的世界,既要尊重本民族的文化,同时也要尊重其他民族的文化,从而突破难点。
PPT:文化创新的途径环节二:(展示情境 探究问题)情境一:先后展示徐悲鸿的《奔马图》和《愚公移山》设计意图:在作品的选择上遵循由易到难,由感性到理性的原则让同学们从中体会作者的创作情怀,比较两幅图表达的心境不同之处及其原因。探究一:从创作背景的不同,探究文化创新的根本途径。PPT:(设问)1、为什么同一画家在不同时期,作品所反映的内容不同?2、从中我们可看出,文化创新的根本途径是什么?设计意图:引导学生分析时代的变化对人们的社会实践的影响,因而文化工作者在体验生活的过程中创作的作品意境也会不同,培养学生透过现象看本质的能力,得出文化创新的根本途径是社会实践。教师过渡:在社会实践中,徐悲鸿先生还有什么创作的成功秘诀吗?探究二:从创作心得的展示,探究文化创新的重要途径(PPT)徐悲鸿一生致力于国画的创新实践,他认为革新中国绘画的要旨在于:“古法之佳者,守之;不佳者,改之;垂绝者,继之;未足者,增之;西方画之可采入者,融之。” 设计意图:通过阅读材料,培养学生寻找关键词的能力,并从中总结归纳文化创新的重要途径----继承传统、推陈出新。
一、教学目标:基于对教材的理解和分析,根据《课程标准》和学生的知识水平及认知特点。我制定了这样的教学目标。(1)知识目标:理解社会实践的发展是文化创新的动力和源泉,认识文化创新的作用以及文化创新在新时代的价值和作用。(2)能力目标:能够分析事例,说明社会实践是文化创作和发展的重要根源,从而培养学生的比较分析能力、辩证思维能力(3)情感态度与价值观目标:通过本框教学,使学生明确文化创新的重大作用,激发学生投身建设中国特色社会主义伟大实践而进行文化创新的热情,从而培养学生的创新精神、爱国情感和民族自豪感,增强学生进行文化创新的责任感和使命感。二、教材分析本框题内容包括情景导入--不尽的源泉,情景分析--巨大的作用、深刻的意义和情景回归--呼唤文化创新的时代三个目题。其内在的逻辑关系是由第一目题导入社会实践是文化创新的源泉,也是文化创新的动力的观点,第二目是对文化创新的作用进行理论上的分析。第三目情景回归,当今时代呼唤文化创新。
1、 说教材的地位和作用《世界文化的多样性》是人教版必修教材《文化生活》第二单元第一课的第一个框题。多样性是当代世界文化的重要特征,也是文化交流和传播的前提。因此,本框知识具有承前启后的作用,在本单元中,它是一个引子,开启了本单元知识的学习之门。2、 说教学的重、难点根据课程标准以及高二学生的知识结构和思维特点,我确定了教学重点和难点。教学重点:民族文化的多样性。确定重点的依据:丰富的世界文化表现在文字、建筑、服饰、饮食、宗教信仰、思想理论、文学艺术、风俗习惯等众多方面。世界有许多辉煌的文化成就和著称于世的文化遗产。可以说,世界文化的多样性主要表现在民族文化的多样性。在教材内容中有许多关于文化的论述和概念。其中“民族文化的多样性”起着关键性的作用。难点:尊重文化多样性必然性。
活动目标: 1、培养幼儿热爱祖国、热爱家乡的情感,珍惜每一份资源,做到不浪费,养成良好的环境意识。 2、培养其口头表述能力,通过听故事,能独立的完整的将大意概述出来。 3、了解纸的由来,学会利用纸,包括废物利用和循环利用。 活动准备: 各种各样的纸、剪刀等,造纸故事,造纸图、蔡伦图、颜料、桶。 活动过程: 一.谜语导入:引出“纸”。 “有个用具它不简单,可以写字,还可以把数算。 订起来是一本书,拆开来是一张张, 它是谁,我们都来猜猜看。”
2、继续学习正确目测6以内的数群。3、乐意主动的讲述自己的操作过程和结果。活动准备:1、经验准备:幼儿已认识过数字,并乐意用目测数群的方法进行数数活动。2、物质准备: (1)教具:分类底版,6以内的实物卡片,相应数量的数卡 (2)学具:聪明的玩家(分类底版,6以内的各种实物卡片,相应数(点)卡等) 给一样多的发花(不同排列形式的实物操作卡,雪花片) 一样多的放一起(6以内不同排列形式的实物卡片)
2、学习用创造性的动作自由表现乐曲中不同乐段的情景和情节。3、学习建立游戏的规则,并体验与别人合作游戏的乐趣。活动准备:1、音乐图形谱,以多媒体课件的形式进行。2、音乐和录音机活动过程:一、活动引入1、老师:“呜……”,听什么开来了?“对,是火车,而且是一列奇妙的旅游列车,在旅程中,它还发生了一个有趣的故事呐,现在老师请大家边听音乐,边看图谱,想想到底发生了一个什么故事?听完以后告诉我好吗?”
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
(1)以人为本,减少危害。切实履行政府的社会管理和公共服务职能,把保障公众健康和生命财产安全作为首要任务,最大程度地减少突发公共事件及其造成的人员伤亡和危害。(2)居安思危,预防为主。高度重视公共安全工作,常抓不懈,防患于未然。增强忧患意识,坚持预防与应急相结合,常态与非常态相结合,做好应对突发公共事件的各项准备工作。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.3 一元二次不等式教 学 目 标知识目标:1、理解一元二次不等式和一元二次方程以及二次函数之间的关系 2、理解一元二次不等式的解集的含义 3、一元二次不等式的解集与二次函数图像的对应 技能目标:1、会解一元二次方程 2、会画二次函数的图像 3、能结合图像写出一元二次不等式的解集 情感目标:体会知识之间的相互关联性,体会数形结合思想的重要性教学 重点 和 难点重点: 1、一元二次不等式的解集的含义 2、一元二次不等式与二次函数的关系 难点: 1、将一元二次不等式和一元二次方程以及二次函数联系起来 2、在函数图像上正确的找到解集对应的部分教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.3课后记本节课内容是比较重要的,是一元二次方程、一元二次函数、一元二次不等式的结合,相关知识点融会贯通,数形结合的思想方法在这有很好的运用。三种情况只要讲清楚一种,另外两种可由学生自行推出结论。
【教学目标】1、了解方程、不等式、函数的图像之间的联系;2、掌握一元二次不等式的图像解法;【教学重点】1、 方程、不等式、函数的图像之间的联系;2、 一元二次不等式的解法。【教学难点】 一元二次不等式的解法。【教学设计】 1、从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;2、类比观察一元二次函数图像,得到一元二次不等式的图像解法;3、加强知识的巩固与练习,培养学生的数学思维能力。【课时安排】 2课时(90分钟)【教学过程】一、一元二次不等式的解法² 复习回顾1、根据初中所学知识,填写下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的图像ax²+bx+c=0 (a>0)的根有 2 个根有 1 个根有 0 个根2、观察二次函数y=x²-5x+6的图像,回答下列问题:(1)当y=0时,x取什么值?(2)二次函数y=x²-5x+6的图像与x轴交点的坐标是什么?(3)当y<0时,x的取值范围是什么?总结:由此看到,通过对函数y=x²-5x+6的图像的研究,可以求出不等式x²-5x+6>0与x²-5x+6<0的解集
教学目标:知识与能力目标:1.能够借助三角函数的定义及单位圆推导出三角函数的诱导公式 2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角的三角函数的化简、求值问题情感目标:1.通过诱导公式的探求,培养学生的探索能力、钻研精神和科学态度 2.通过诱导公式探求工程中的合作学习,培养学生团结协作的精神; 3. 通过诱导公式的运用,培养学生的划归能力,提高学生分析问题和解决问题的能力。 一导入:二、自学(阅读教材第110---112页,回答下列问题) 在直角坐标系下,角的终边与圆心在原点的单位圆相交于,则,(一)终边相同的角:终边相同的角的 公式一:_______ ________________(二)关于轴的对称点的特征: 。对于角而言:角关于轴对称的角为_______公式二:__________ _________ _________
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。