本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力. a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;
三年前,我们怀着对未来的美好憧憬,带着家人与老师的殷殷期盼,兴奋地跨进了心仪已久的美丽的邗中校园。春来春去,杨柳依依,书写无悔年华;燕离燕归,白云点点,唱响人生奋斗的凯歌。微冷的春风淡去了烟尘与伤痛,沉淀在内心的,是缤纷的梦想和那收获前的耕耘与奋斗。蓦然回首,三年寒窗苦读,一千多个日日夜夜,铸就了我们必胜的信念与坚不可摧的意志。我们的目光,从来没有像今天这般坚定执着;我们的思想,从来没有像现在这般成熟饱满;我们的心灵,从来没有眼前这般激荡燃烧。
(一)学科范围: 、四、五、六年级社会,科学,体育,美术,音乐,信息、劳技。 2、七、八年级政治,生物,历史,地理,体育,音乐,信息。九年级音乐、体健。 (二)学科计划 任课教师对所教的副科要写教学计划,备一份计划上交教务处,教师根据教学计划要求进行上课。 体育课要有集合、队列、新授体育知识(篮球、排球、铅球等基本技巧)、完成游戏。一节课至少要上30分钟以上。 美术课计划与上课、作业相结合,学生要掌握绘画的一些基本技能。能完成一些简笔画和蜡笔画。 音乐课必须教会国歌、校歌、三首励志歌曲(手语歌曲音乐教师可自行选定歌曲)共五首歌曲。形成校园流行色。
人们曾用这些词语形容老师:蜡烛、泥土、春蚕、园丁。这些语言既表达了人们对教师的尊敬,也表达了他们对教师的希望。教师是奉献者,教师是耕耘者,桃李满天下的时候,教师是收获者。他们收获的不仅仅是学生的成长,更有社会的进步。所以说,教师的角色是多么的重要。 韩愈说:师者,所以传道、授业、解惑也。教师与学生之间是传导与接受的关系,当学生从家长手里交托到教师手里时,教师的角色发生了转变,但是谁能说不是学生改变了教师呢?学生们永远年轻的思维与灵魂赋予了教师们生生不息的求知态度,学生们活跃丰富的头脑传达给教师灵活知性的教学理念,学生们的态度和表现决定着教师的教学准则与方法。这样,教师与学生的角色互换了,我们是共为一体的关系。我中有你,你中有我。 而社会发展到今天,科学技术飞速进步,社会急剧变革,计算机及信息技术在教学中的的应用,师生之间已经不完全是单纯的传递和接受关系了,学生可以从其他渠道获取知识,有时候甚至在某些方面比教师知道的还多,教师和学生的关系也不那么单一了,教师的角色多元化了。在现代,教师不仅是教学过程的设计者,还是学生学习的引导者和促进者,是教学工作和学生学习生活的组织者和管理者,更是一位教学的反思者和研究者。在这诸多的角色体系中,不管是那一个角色没有演好,都将面临职业生涯的挑战。而这么多的环节之中,最重要的和贯穿始终的就是师德师风的培养和表现。
①谈话引入:“小朋友们喜爱的小动物还有很多很多呢,你们能给其他动物编上歌词并说出来吗?”让我们来当“小小作词家吧”。 ②鼓励学生进行创编。 ③选择几种,跟着音乐一起唱。 (培养学生的音乐创造能力,同时引导学生要关于观察、关于模仿,通过模仿,由易到难、循序渐进地进行创造。 4、小结 师:动物是人类的朋友,我们要保护动物,爱护动物。听着小朋友们美妙的歌声,看着大家亲密无间的合作,老师心里无比的高兴。同学们还可以把小动物们请到我们的歌曲中来,和他们成为好朋友,你们可真的很能干! 整个教学过程从一开始的律动,后来的模仿到创编和即兴表演,运用感知法、认知法、学唱法,让学生用有感情的演唱和肢体语言表达对小动物的喜爱之情。通过创编,培养合作精神和创新能力,获得成功的喜悦。使学生的演、唱、创新、合作能力得到很好的发展,并渗透了思想教育。
活动过程 一、回忆交流屋顶上的不同设施(目的:是在交流中发展语言,关注孩子语言的表达,丰富他们的经验。)1、出示文字“秘密”、“屋顶上”,引出话题。2、幼儿提问,解决几个问题 小结:屋顶上一些设施的不同用处(根据孩子的介绍)。 二、发现、感受一些有趣的屋顶(目的:感受屋顶与人们生活的关系,发展观察能力以及分析、比较等思维能力。)1、出示一组照片猜猜我去了哪里,结合经验说出理由。2、了解空中百鸟园在何处,猜猜为何屋顶上有百鸟园?3、幼儿看录像,了解屋顶百鸟园的意义。4、再猜一张照片,判断这是什么地方?上面会有什么?
【活动目标】 1、认识各种各样的包装袋。 2、认识食品包装袋的各种标识,并能在生活中加以运用。 3、了解白色污染的危害,学习制作、使用环保手提袋。 【活动准备】 1、布置任务:和家长一起收集生活中见到的包装袋标识,与老师、小朋友交流分享,初步了解标志的意义和作用。 2、多媒体课件 3、教学挂图 4、每位幼儿带一袋小食品 5、大挂历纸、牛皮纸、透明胶、打孔机、塑料绳、彩笔等。
幼儿园大班的孩子具有初步的计算能力,为了更进一步的提高他们这种能力为进入小学学习做好准备,我在设计《5的组成》时、注重从感知入手、有具体到抽象、通过有趣的游戏,激发幼儿学习兴趣、达到培养幼儿的观察能力和动手动脑能力的目的。 1、教学目标 (1)这节课我主要让幼儿认识5、学会5以内的数量。正确书写5; (2)让幼儿通过有趣活动来学习5的组成、知道5的4种分法和掌握数分号规律; (3)发展幼儿思维的灵活性、培养幼儿对数学活动的兴趣; (4)培养幼儿同伴的协助能力。 2、教学重点 本节课重点是幼儿学习5的组成、知道5有4种分法 3、教学难点 本节课难点是让幼儿书写5、知道5的分成
以幼儿在第一课时的学习情况及布卢姆的《教育目标分类学》为依据,我从认知、能力、情感方面确立了本节课的目标: (1)幼儿通过游戏能较熟练地分辩10以内的单数、双数。 (2)培养幼儿思维的灵活性,提高幼儿在数学活动中的分析 (3)幼儿在游戏中体验参加数学活动的乐趣。 判断能力。 根据目标,我把活动的重点定位于:幼儿在游戏中通过亲自操作,能作证明10以内的任意一数是单数还是双数。 活动的难点是:幼儿能根据单双数的排序规律,成功地解决游戏中的一些问题。 为了在游戏中充分调动幼儿的各种感官参与活动,我准备了充足的材料:数字卡片、实物教具、磁性黑板、胸卡、头饰等:此外,富有挑战性的游戏还要求幼儿有相关的知识准备,如:掌握序数、相邻数等。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
公司的年会上都会有公司的员工参与或编排的表演。可以请来专业的老师进行指导并协助编排节目。(曾经有一个公司的年会因当年最为流行的是“超级女生”,几个唱歌比较好的女孩子组合在一起,彼此做了一个定位后形成了“超级女生Copy版”。
一 减数分裂高一生物减数分裂说课稿各位评委、老师:大家好,我今天说课的题目是高中生物必修2第二章第一节〈〈减数分裂与受精作用〉〉第一部分减数分裂第一课时精子形成过程。接下来我就从以下几个方面来说说这一节课。一、说教材1.教材地位和作用《减数分裂》这一部分内容不仅是第二章的重点内容,也是整本书的重点内容之一。它以必修一学过的细胞学知识、染色体知识、有丝分裂知识和初中生殖种类知识为基础。通过学习,使学生全面认识细胞分裂的种类、实质和意义,为后面学习遗传和变异,生物的进化奠定细胞学基础。2.教学目标(1)知识目标:掌握减数分裂的概念和精子的形成过程;理解减数分裂和受精作用的意义。(2)能力目标:通过观察减数分裂过程中染色体的行为变化,培养学生识图、绘图能力以及比较分析和归纳总结的能力。
活动一:课本第三页的活动题,把学生分成几组然后让他们读图讨论,思考书上的几个问题,最后派个代表回答问题.最后教师做适当的补充:人口的自然增长不仅与人口自然增长率有关,而且还与人口基数有关.活动二:课本第七页的活动,先让两位学生阅读第六页的案例结合活动题思考问题,让几个组学生讨论所给的几个问题.让学生归纳最后教师做适当的补充.时间安排:由于本节内容不难因此整个教学过程是一节课的时间来完成的因此在教学过程中注意时间的把握,在做活动和讨论时注意把握时间,自己尽量少说废话.课堂小结通过这一节的学习,同学们正确理解和认识人口增长,增长模式和人口增长模式的转变。我们可以利用比较法、分析法来掌握,并联系现实生活,进行分析、判断,化理论知识于实践之中。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。