通过此次活动,浓厚校园文化氛围,丰富同学的课余生活,发掘文艺人才,给同学们创造一个锻炼自我的舞台,提高同学们的艺术欣赏水平,陶冶情操,让同学们在浓厚的艺术氛围中健康成长,将来为社会做贡献。
我们社是学术类的社团,虽然名为研究会,并非只是呆呆坐在书桌前专心苦读古籍、名着。我们的会员充满了对历史文化的好奇和热情,自我动手diy,在玩的同时学到知识是我们最终的目的。
其实追逐富有没有错,只是在追逐的时候,是否始终是基于对一种爱的感恩和报答呢世界上应当有这么一片净土,没有金钱的纷争,不为物质所左右,那里有心灵的自由,那里才能体会付出的欢乐。——这就是慈善事业。
有个刚生下的婴儿,有两个小孩和他是同年同月同曰生的,而且是同一对父母生的,但他们不是双胞胎,这可能吗? 为什么? 市里新开张了一家医院,设备先进,服务周到。但令人奇怪的是:这儿竟一位病人都不收,这是为啥?
活跃气氛、搞笑成语接龙:这个游戏的名字只是用来迷惑大家,而并不是真的要接龙。选出几位年轻人上台,让大家先在纸上写出5个成语,因为游戏题目叫成语接龙,所以大家会考虑的是成语如何接龙,最后一个字该容易还是简单。等大家都写好之后,让大家都把自己的成语向台下观众读一遍。
A.大力深化大数据、人工智能等研发应用B.高举新时代改革开放旗帜,继续全面深化改革、全面扩大开放C.加强国际交流与合作,培育竞争新优势D.建立更加公平、更可持续的社会保障制度 2、发展是解决我国一切问题的基础和关键。全面建设社会主义现代化国家,必须始终抓好发展 这个基础和关键。中国积极谋求发展,就必须 ( )①引领、主导全球规则的制定②要加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局③掌握国际竞争主动权④积极寻求新的经济增长点A. ①②③ B.①②④ C.①③④ D.②③④3、“中国制造2025”构想的提出,对于中国传统制造业的转型升级影响深远。新一代信息技术 和传统工业的深度融合已成为中国新一轮制造发展制高点,我们要把智能制造作为中国制造未 来的主攻方向,实现由“中国制造”向“中国创造”“中国智造”转型。这有利于 ( )①促进我国经济实现由实体经济向虚拟经济转变②通过新技术将传统产业打造为高新技术产业③推动传统产业优化升级,从而进一步提升我国在全球分工中的地位④催生新兴产业,形成新的经济增长点
(四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,结合信息技术下的思政课与信息 技术的深度有效融合,不仅完成了培育学生课程核心素养提高政治认同的目标,而且有效 的激发了学生的学习兴趣。作业以学生的“微型讨论会”为主要情境,设置了三项任务,层层 递进,螺旋式上升。作业以填写“活动记录”的形式呈现。教师从“掌握必备知识, 理论联系实 际 ”“培养核心素养,提高政治认同”等 5 个维度对作业进行评价,以“优秀”“良好” “合格”三个等级呈现。学生通过“微型讨论会”的方式,畅谈自己对中国在国际社会中的 地位和作用及相关外交政策的了解,通过该作业设计,教师可以引导学生关注国家和世界 局势,树立正确的人生观,世界观和价值观。 以增强学生的政治认同和责任意识。
8. 2022 年,俄乌冲突以来,美方不断泛化国家安全概念,滥用出口管制措施, 多次以所谓“人权”等为由,对中国企业无理打压,严重破坏国际经贸规则。 同时美国不顾中方多次警告,将航母驶入南海进行挑衅,美国国会操弄“台湾地图牌” 。面对美方的无端打压和干涉,我国应该 ( )A.谦让机遇,合作共赢,与美国共发展B.抓住机遇,迎接挑战,积极谋求发展C.集中力量,增强实力,掌控世界趋势D.主动迎击,不畏强权,巩固霸主地位9. 中华诗词浓缩了中华文化的精华,经过岁月的沉淀仍然闪烁着时代的光芒。 从下列经典诗句中得到的启示,你认为不正确的是 ( )A.“万物并育而不相害,道并行而不相悖”—在国际交往中我国要坚持合作、共赢的理念,做到互信互利 B.“国虽大,好战必亡;天下虽平,忘战必亡”— 中国要屹立于世界民族之林,必须通过战争树立国际地位C.“天与不取,反受其咎;时至不行,反受其殃”—机遇稍纵即逝,我们要抓住机遇,勇于创新,追求发展D.“同心掬得满庭芳”—各族人民要铸牢中华民族共同体意识,手足相亲、守望相助10.从漫画“新四大发明”中,下列认识和理解正确的有 ( )①我们要培育壮大经济发展新动能②我国把提升发展质量放在首位③中国决定着世界经济发展的趋势④中国与世界各国共享发展成果
人们曾用这些词语形容老师:蜡烛、泥土、春蚕、园丁。这些语言既表达了人们对教师的尊敬,也表达了他们对教师的希望。教师是奉献者,教师是耕耘者,桃李满天下的时候,教师是收获者。他们收获的不仅仅是学生的成长,更有社会的进步。所以说,教师的角色是多么的重要。 韩愈说:师者,所以传道、授业、解惑也。教师与学生之间是传导与接受的关系,当学生从家长手里交托到教师手里时,教师的角色发生了转变,但是谁能说不是学生改变了教师呢?学生们永远年轻的思维与灵魂赋予了教师们生生不息的求知态度,学生们活跃丰富的头脑传达给教师灵活知性的教学理念,学生们的态度和表现决定着教师的教学准则与方法。这样,教师与学生的角色互换了,我们是共为一体的关系。我中有你,你中有我。 而社会发展到今天,科学技术飞速进步,社会急剧变革,计算机及信息技术在教学中的的应用,师生之间已经不完全是单纯的传递和接受关系了,学生可以从其他渠道获取知识,有时候甚至在某些方面比教师知道的还多,教师和学生的关系也不那么单一了,教师的角色多元化了。在现代,教师不仅是教学过程的设计者,还是学生学习的引导者和促进者,是教学工作和学生学习生活的组织者和管理者,更是一位教学的反思者和研究者。在这诸多的角色体系中,不管是那一个角色没有演好,都将面临职业生涯的挑战。而这么多的环节之中,最重要的和贯穿始终的就是师德师风的培养和表现。
演讲稿频道《国旗下的讲话演讲稿:遵规守纪 做文明乐安人》,希望大家喜欢。各位领导老师同学大家早上好:冬天的早晨是寒冷的,但是每周一早晨同学们都会排着整齐的队伍,喊着响亮的口号站在国旗下举行庄严的升国旗仪式。为什么?答难只有两个字---纪律。俗话说;没有纪律不成方圆。一个社会,一个团体,只有在良好的纪律维持下,才会逐渐的走向成熟。今天我要和同学们说遵守纪律做文明乐安人。《中小学生守则》和《中学生日常行为规范》已经给了我们明确的目标:自尊自爱,注重仪表,真诚友爱,礼貌待人,遵规守纪,勤奋学习,勤劳俭朴,孝敬父母。我们乐安实验学校的各项校规、校纪和这些守则规范是完全一致的。比如说,学校有明确要求:穿着得体大方,待人谦虚礼貌、言行文明适度等等。这些说起来简单,但做起来可就不那么容易了。有些同学总是怀着侥幸心理,认为偶尔违反一两条纪律没什么关系。
尊敬老师、亲爱的同学们,大家好!今天我演讲的题目是《助人是快乐之本》我曾经看过这样一个故事,一位小女孩去医院探望哥哥时捎上了一朵鲜花。隔壁床的一位病人看见了也希望拥有这么一朵漂亮的花。于是,小女孩每次去探病都不忘为这位陌生人也带上一朵花。后来,这位病人为了让幸福散播开去,在医院旁边开了一个小店,让经过他小店去探病的人也带上一朵鲜花。结果医院里每一个角落都充满着欢乐。在困境中的人,伤心的人,拥有一朵花,感觉就像拥有了整个春天。我们只要为他们献出一片暖暖的关爱,那么,我们就会为他们营造了一个幸福的天堂。在我们生活中,我们都喜欢被别人关心的感觉,我们都希望得到别人的支持和理解。
同学们,你们知道本周四是什么节日吗?对,感恩节!在西方国家,每年11月的最后一个星期四就是“感恩节”,在感恩节那天,人们都要欢聚一堂,举行各种庆祝活动,感谢、颂扬在过去一年里帮助过自己的人,并且尽可能去帮助他人。徐嘉意,上次你跳绳满100个mISSLU奖励你一个橘子,你马上说留给妈妈吃,说明你是一个懂得感恩的孩子,下面请你来说说你是怎么感恩长辈的。一(2)班徐xx:尊敬的老师、亲爱的同学们,大家早上好:在西方,每逢感恩节,人们会团聚在一起,感谢帮助过自己的人。人们还会做好事,去帮助身边有困难的人。今年的感恩节,我要感谢我的长辈。回家帮爷爷奶奶捶捶背,敲敲腿,感谢他们对我的照顾。给爸爸妈妈一个热情的拥抱,感谢他们的养育之恩。徐嘉如,你有什么好主意?
敬爱的老师、叔叔阿姨们: 大家晚上好!(行少先队礼)、。 我是XX班的班长XX。感谢班主任马老师给我这个机会,让我和叔叔阿姨谈谈我的学习方法、读书习惯等等,我担心总结不好,也只能恭敬不如从命。这是我第一次在大人面前正式发言,我担心讲得不好。我爸爸说,只要我说得明白,说话的声音能让叔叔阿姨听得清楚,就算完成了任务,这个信心我有的;如果叔叔阿姨听完之后,回家责骂我的同学你们的孩子,那就是我的罪过! 我要声明两点:一、我今天讲的有不少夸大其词的地方,很多事情我自己也没有做好;二、不要拿自己的孩子跟别人的孩子比较,有问题找解决方法,特别是从家长自己身上找源头,这是我爸爸补充的。 言归正传! 第一:要有一个好的学习环境和学习习惯。我家里有5000多本书,一回到家中就会闻到一股清淡的书香,有时国学机里还会播放着古典音乐或国学诗词文章的朗诵;我家里还有过两只鸟,真是鸟语书香,我仿佛被带入了仙境,容易静下心来读书学习。 白天听课时我会边听边记笔记,就算有些听不懂,我会问老师或回到家把上课笔记好好研究一下,或和爸爸妈妈探讨一下,或网络上查查资料,直到弄懂为止。放学回家,我会先把学过的知识点巩固一遍,然后再做作业。到了晚上,再用放电影法把白天学过知识在脑海里回顾一遍,记忆犹新,温故而知新。
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。