四、说教法、学法我在教学中主要采用的教学方法是先学后教中的“两学两教”。辅之以多媒体教学手段(主要通过微课视频的观看学习)。本课学生的学习方法主要有:自主发现法、合作交流法、自学尝试法等。1.学生在自主探究解答例题,求两种品牌罐头的合格率时,主要采用自学尝试法,根据知识的迁移,学生能够正确求出产品合格率。2.在总结小数、分数化成百分数的方法时,学生主要采用自主发现,合作交流的方法。首先让学生观察例题板书,想一想怎样把小数、分数化成百分数,采用了“兵教兵”的方法,达到了人人参与的目的。当然,由于学生所处的文化环境,家庭背景和自身思维方式的不同,不同的学生所采用的方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。五、说教学过程
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
6、问题的检验学生提出的问题和老师拓展的问题在解答过程中,学生能否真正领会,或领会的程度如何?这就需要检验才能了解。检验的方式很多,可以通过交流、调查、反思、随堂检测等方式进行。我主要采用随堂检测的方式,把事先准备好的自测题发给学生,或利用多媒体投影来进行当堂检测。检测题目不宜过多,可随学生的课堂表现而有所增减,同时,把拓展性的问题作为思考题留给学生课外探索。如,这节课我是选择了《同步作业》中的几个具有代表性的问题来完成检验的。安排这一环节的意图:通过把教学内容以问题的形式列出来,用于检验学生对知识点的掌握和教师教学效果的了解,帮助教师及时掌控课堂教学情况,调整教学思路和教学进度。7、我的收获和疑惑课程结束时,让学生谈谈自己的收获以及还有哪些问题没能搞明白。安排这一环节的意图:这一环节可以促使学生对本节课的内容进行主动的、深层次的的回顾与反思,从而加深学生对所学知识的整理、记忆与理解,同时也便于老师对课堂教学效果的及时掌握和调整以后的教学思路。
多媒体让学生直观地掌握好音高,巩固歌曲旋律的掌握,积累读谱经验。六、创造表现-----享受过程在学生能熟练演唱的基础上,让学生选择竖笛为歌曲伴奏,还可以让学生边唱边即兴表演。让学生自由组合分成打击乐器组、演唱表演组和竖笛组,调动学生多种感官参与音乐体验和表现,加深了对这一音乐作品的感受,获得审美体验。这里我启发学生用自己喜欢的各种方式来表现歌曲,可以是身体语言、也可以是打击乐器。门德尔松说过一首我喜爱的乐曲,所传给我的思想和意义是不能用语言表达的。通过充分的音乐实践培养学生的能力,提高音乐素养。从目标的提出、到过程的安排、学习方法的确定、乃至学习成果的呈现,都让学生有更大的自主性、更多的实践性、更浓的创造性,让学生的音乐课堂更加丰富,教学成效更加明显。
欢快的音乐像小朋友在做游戏,舒缓温柔的音乐像春姑娘在翩翩起舞。这些充满童趣的语言,让他们在感受音乐中丰富了想象,在想象中又进行了乐感的培养。接着,我让学生分小组为这段旋律填写春天的歌词,这唤起并促进儿童潜在的音乐本能。让孩子们感受到音乐是自已生活中的需要。学生在一起进行创作,发挥集体协作精神,我再让小组展示自己的创作,并进行互评。这样的创作活动无论是过程还是结果,孩子们在心理上都得到满足、肯定、愉悦。最后,我采用情景陶冶法,用多媒体技术把教室创设成一个美丽的大草地,在春天图案的背景下,在优美的乐曲声中,学生分组进行游戏活动。在轻松快乐自由的氛围中学生知道了春天到底藏在哪里?它,在温暖的阳光里,在嫩绿的枝头上,在大家的歌声里,在老师的笑脸上,在我们的心里,在美好的生活里。孩子们感受到了春天的无处不在,从而更加热爱大自然。珍惜幸福生活。
学生A回答:我会学习张米亚老师的无私奉献精神,去帮助大家,去挽救更多的生命。学生B回答:我会尽我所能去就我能救得每一个人。学生C回答:我会从现在开始,多学习有关地震方面的知识,万一遇上,可以合理指挥现场,把损失降到最小。教师总结:总而言之,在灾难来临之时,我们要学习张米亚老师身上无私奉献的精神,勇于挺身而出。这一环节的设置,使学生积极主动,合作交流,在思考和讨论中加深理解和体验,有所感悟,从而收到情感熏陶获得思想启迪,进而解决了教学重点,突破了教学难点。第四环节拓展延伸知识迁移请同学们阅读课本36页的相关链接文章《冰雪为容玉作胎》,结合本课内容谈谈你的读后感。本环节的设置拓展了学生的知识面和阅读范围,使学生学以致用,培养了学生的应用探究能力。第五环节 歌声陶冶振奋精神全班齐声合唱韦唯的著名歌曲《爱的奉献》结束全课。
第四结束环节:表演歌曲,我主要采用创编练习的方法来完成。1、请孩子们带上自己做的脸谱,以及发出短音哼唱的。对孩子们的制作表示赞赏,对特别有创意和制作特别精美的脸谱的孩子奖励。2、当然,由于时间的紧迫,学生们的创编在这一节音乐课上不可能一一的展现出来,我将选择其中较好的小组的创编在本节课上进行当众表演,并鼓励其它组创编的形式,课后进行再加工,下一节音乐课为老师和同学进行表演。这样的设计,不仅使本节课的教学得到了适时的拓展,而且,还将这一内容扩大到了课后,为下次的音乐课教学做了很好的铺垫作用。总之,我设计的这节针对小学五年级学生的音乐课,体现了新课标要求,遵循了基本的教育原则,并在单元目标的总体规划下,体现了音乐课独特的施教特点,完成了教学内容,达到了授课目标。
结合我们学校的教学条件和我自身会弹琴的优势,我还设计了课堂弹奏活动,激励学生练习好了参加圣诞联欢晚会给大家表演节目。 我把第一段的乐谱进行了简化节奏让学生弹奏,在弹奏基本完成后还设计了学生边唱边弹,并且分组让学生用电子琴自带的的打击乐器进行合奏练习,让学生在学唱的同时更加深入的体会音乐欢快活泼的节奏特点,同时让学生感受合奏的整体的音响效果,培养了学生的动手能力和集体合作能力。 六、总结 本课以歌曲《铃儿响叮当》为主要内容,听、唱、弹等教学环节都围绕他展开,各教学环节的设计易于统一,各项活动的设计均以音乐审美为核心,教学中关注段落的划分,注重引导学生的参与,体验,引导学生积极探索创造学习,展现音乐的节奏之美。
一、说教学内容1.说教学内容的地位与作用《商不变的规律》是义务教育课程标准实验教科书数学四年级上册的内容。在此之前学生已经学过三位数除以两位数的除法,有了这些知识作为铺垫,学生能更直观深入地理解本节知识。同时,本节课的学习也为以后学习小数除法作了铺垫。2.说教学目标(1)知识与技能:能运用商不变的规律口算有关除法。(2)过程与方法:让学生经历探索的过程,学会并用类比迁移的方法探索新知,通过观察、分析、交流、合作总结被除数和除数同时发生变化,商不变的规律。培养学生观察、比较、猜想、概括以及发现规律、探索新知的能力。(3)情感、态度与价值观:引导学生经历探索过程,体验数学知识的探索性,体验发现乐趣,增强成功体验。3.说教学重难点教学重点:(1)引导学生自己发现规律,掌握规律;(2)通用简单的语言表述规律;(3)利用商不变的规律进行简便计算。
三、巩固应用在这一环节,我设计了三个层次的习题,内容由浅入深,逐步提高,让学生体验到用数学知识解决实际问题的成功感,并给学生提供自主探索的时间和空间,从而产生积极的数学情感。第一个层次(基础练习):课件出示教材第28页中“试一试”的第一题,让学生根据情境中的信息,比较两题之间的异同,独立解答,然后交流解答方法,加深对百分数问题的理解。第二个层次(综合练习):课件出示教材第29页中“练一练”的第1、2、4题,鼓励学生独立分析题意,寻找等量关系,然后列方程解答。引导学生将题中的“二成”转化为百分数。第三个层次(提高练习):课件出示教材第29页中“练一练”的第5题,鼓励学生提出两个不同的问题并解答,培养学生根据统计图提供的信息提出问题的能力,使学有余力的学生有所提高。四、总结评价1、学生归纳总结在本节课你学到了什么,有哪些地方要提醒同学们注意。2、师作适当的补充和评价。此环节通过师生互动,生生互动,经历一次再学习,再巩固的过程。
1.注重创设情境,让学生从现实生活中学习数学。“良好的开端是成功的一半。”精彩的开篇不仅很快集中了学生的注意力,而且调动了学生主动参与学习的积极性。所以课的开始,我设计了王叔叔的例子.我的话语一落下,同学们就纷纷举起了手,发表自己的看法。首选的办法就是存银行,并且说出储存银行的好处。一是可以获得利息增值;二是可以支援国家建设。学生了解了储蓄的意义,从而引出课题,使他们感到要学习的内容与现实生活的紧密联系,有利于提高学习的兴趣.2、给学生充足的探索空间,让学生成为学习的主人。课堂上,让学生主动地进行数学学习,动手实践、自主探索、合作交流。3、积极引导学生把知识应用到生活中。数学来源于生活,也服务于生活,引导学生学会把课本中的所学,应用到日常生活中,学生对存款中的有关计算利息,本金、利率等知识了解的同时,也能结合学习中的体验开展实践交流活动,形成良好的消费观,也能把储蓄、纳税的知识应用到现实生活中来。
在交流的过程中,教师要站在“导”的位置上,放手让学生说,最后总结出,解决这个问题,重点要理解问题的实质含义:究竟是谁和谁比,谁是单位“1”。本环节的设计既拓宽了解题思路,又锻炼了表达能力,同时也提高了抽象概括能力。(五)巩固拓展:实战演练,我最棒!在练习的设计上,我兼顾了习题的层次性和开放性,使不同层次的学生都参与练习,以求训练思维、培养能力、形成技能。(六)课堂总结通过学生说一说本节课自己的收获,达到对本节课知识点的梳理与整理,进一步巩固对知识点的掌握。总之,本节课教学活动我力求充分体现以下特点:以学生为主体,充分关注学生的自主探究与合作交流。教师是学生学习的组织者、引导者、合作者,对一个问题的解决不是要教师将现成的方法传授给学生,而是引导学生寻找解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
2.学法指导通过实例引入,引导学生关注身边的数学;在借助长方形面积公式来推导圆的面积公式的过程中,让学生通过观察、归纳、联想、转化等学习方法,动口、动手,动脑,培养学生学习的主动性和积极性。3.教学手段为了更好地展示数学的魅力,我结合多媒体辅助手段,充分地调动学生的感官,增加学习的形象感与趣味性,并且给学生留有足够的思考和交流的时间和空间,使学生成为课堂的主人。三、说教学过程1.创设问题情景,引入课题。出示课件让学生观察并说说从图中能发现什么数学信息,使学生在具体情境中了解圆面积的含义,体会到研究圆面积的必要性。2.探究思考,解决问题:估计圆的面积有多大。通过探究和思考使学生进一步体会到面积度量的含义,感受“化曲为直”的思想,同时培养学生的估计意识。
解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺规作图知AM是∠CAB的平分线,∴∠MAB=12∠CAB=30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。