一、师生问好二、呼吸练习深呼吸,均匀吐气。三、视唱《小鸟小鸟》1、识谱练习,学生自己试着唱歌曲的旋律。2、学生跟琴试着唱歌谱。3、分组进行练习,发挥组长的作用,提高学生视唱的能力。4、学生加歌词,用正确的发生方法进行演唱。5、老师用优美的琴声带领学生唱歌。四、二声部学习,歌曲处理1、全班唱歌曲主旋律,用正确的发声方法,口腔自然打开。2、第一声部的同学复习旋律,要求口腔要圆润,并用上自然的声音。3、第二声部的同学跟老师的琴声哼唱旋律。老师弹唱二声部旋律,学生听与第一声部的区别。老师可以反复两次,请学生比较二声部的音比第一声部高还是低,教师做适当的引导。
一、生态环保导入 设问:(1)哪些小动物是人类的好朋友?我们要加以保护吗? (2)你能说出描绘春天的成语吗?(春光明媚,鸟语花香,春暖花开,莺歌燕舞……)二、聆听范唱《小鸟 小鸟》 设问:(1)歌曲是几拍子?说出该拍号的含义?(复习6/8拍号) (2)歌曲表达了怎样的情绪,描绘了怎样的情景?三、学唱曲调1、教师范唱曲调。 设问:曲调每一乐句有什么规律?每起句的第一拍有什么规律?(弱拍起唱——第六拍起唱)2、先学第一部分(第一乐段)。 A、教师范唱。设问:听辨并找出相同与相似的地方?
学唱歌曲《小鸟 小鸟》的活动可采用谈话的方式导入,让学生描绘身边的春色,说一说赞美春天的诗句以及对新的一年寄予新的希望等等,应让学生畅所欲言。教师则抓住本课的主题进行总结:春天带来了新的希望。不仅人类对春天充满渴望,而且自然界的一切生灵,也都诉说着对春天的渴望。 初听歌曲时,教师引导学生模仿小鸟飞翔的动作,随着音乐动一动,体会圆舞曲的节拍感。学唱歌曲时,可以根据情景先学习合唱部分。 歌曲艺术处理的重点是抓声情的处理。也可以将艺术处理交给学生,让他们分组讨论,发表自己的观点,并分组展示,共同归纳总结,这样更能激发学生的兴趣。
一、情境导入 出示几幅风景画,展示春天的景色,感受春天的美景。老师说:“小鸟非常的可爱,给我们的生活带来了无穷的乐趣,下面我们就来听一首歌曲《小鸟 小鸟》,听后请你们说说自己的感受。”二、寓教于乐 学生初听歌曲,感受歌曲情绪。学生表达自己的感受:欢跃、亲切地、活泼地…… 教师:这样一首欢快的歌曲你们想不想知道它唱得是什么内容呀?(学生回答)下面就请大家认真听一听歌曲中都唱了什么?学生听歌曲内容,听后复述:春天里有阳光,树林里有花香,小鸟在自由地飞翔,在田野,在草地,在湖边,在山岗,小鸟迎着春天歌唱…… 学生再次聆听歌曲,熟悉歌曲内容。
2、能专注地观察纸人的动作图谱,并在图谱的提示下合作表演木偶舞。3、体验师幼共同表演的愉悦。准备:1、小纸人若干2、条形KT板四块3、音乐光盘、VCD一架 过程一、随音乐带动跳进活动室师:小朋友们,你们喜欢舞蹈吗?那就跟音乐跳起来吧!师:在美妙的音乐声中,我们来到了纸人王国,纸人王国就要举行一场音乐舞会,,小纸人们正在发愁,不知道编什么动作好,我们那小朋友都很喜欢舞蹈,愿不愿意帮他们编舞蹈,设计好看的动作?(愿意)瞧!他们来了
2、主动收拾整理班级的玩具等。活动准备:准备统计表、笔,幼儿学习包《我们的班级》活动过程:1、 谈话引题。引导幼儿观察班级的物品、玩具等环境。 2、统计物品统计物品及玩具的数量,并用数字记录在统计表上。
2、鼓励个别体弱幼儿和大家一起参加游戏。。【活动准备】1、跳跳袋每人一个、纸板饼干若干。2、录音机,节奏轻快、活泼的乐曲带。3、虫子头饰。【活动过程】 一、开始部分:1、听音乐做热身运动。2、自己选择头饰戴上,并互相探讨动物的各种姿态和动作,看谁模仿的逼真。
一、考核时间:以每个教学月为单位,一月一考核,一月一计奖。二、计分方法:月满分为200分,本规定以扣分为主,扣后的剩余分数之和加奖分等于本月总积分。三、记奖方法:各年级组同类班级取第一名为文明班级。如若特长班第二名与第一名月积分小于或等于10分,可享受二等奖,若特长班第三名与第一名月积分小于或等于20分,可享受三等奖,大于20分无奖;如若平行班第二名与第一名月积分小于或等于20分,可享受二等奖,如若平行班第三名与第一名月积分小于或等于30分,可享受三等奖,大于30分无奖;一班的评奖方法是:与一班、一(5)班减去寝室的月积分相比,若高于或等于第一名的月积分,可享受一等奖,如此例推;二(4)班的评奖方法是:减去5个流失生的分数,与二(1)班、二(2)班、二(3)班的最后一个获得奖项的班级相比,如若月积分小于或等于20分,可享受一等奖,若月积分小于或等于30分,可享受二等奖,如若月积分小于或等于40分,可享受三等奖,大于40分无奖,若在同级同类班级中月积分小于3分,每班可同时享受一等奖、二等奖、三等奖(平行班月扣分达80分以上取消评奖资格,特长班月扣分达50分以上取消评奖资格)。四、奖金分配:初一、初二住读班、特长班、初三走读班按班数每班每月拿出0.5个岗位值来作为总奖金,初一、初二走读班按班数每班每月拿出0.4个岗位值来作为总奖金,初三特长班、住读班按班数每班每月拿出0.6个岗位值来作为总奖金,一次扣3分。财产:每月至少查一次,损坏公物要照价赔偿,且予以扣分,玻璃一块扣1分,桌椅损坏一张扣2分,门破窗垮一次扣5分。大型集会:如升旗、运动会、课间操……等班主任必须到操场组织学生站队,确保队伍质量,真正做到快齐静,班主任一次未到扣1分。班级被领导点名批评一次扣1分。班级无故缺会一次扣10分。宣传:黑板报每月办一期,以学校安排为主,未安排时各班自行主办,否则未办一次扣5分,在学校大型宣传活动中,不投稿、不配合1次扣5分,其它酌情扣分。
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。