(1)请你用代数式表示水渠的横断面面积;(2)计算当a=3,b=1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a+b)b(m2);(2)当a=3,b=1时水渠的横断面面积为12(3+1)×1=2(m2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.
解 由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a =1.21×2 = 2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3 当x=-3时,多项式mx3+nx-81的值是10,当x = 3时,求该代数式的值.解 当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
教学过程:一、导入:1、今天,我们要来欣赏交响乐中的另一种体裁——交响诗。2、交响诗是类似于交响童话的一种体裁,我们知道交响童话就是用交响乐的形式来给我们讲述童话故事,那交响诗也是跟交响童话一样用音乐来给我们讲故事,但因为交响诗所讲述的故事会具有一定的魔幻、神奇、浪漫的色彩,所以才把它称之为“诗”。那么,我们今天要来欣赏的是什么故事呢?——《小巫师》二、分段欣赏《小巫师》:1、在很久很久以前,有一个古老的城堡(课件),请随着音乐去看一看,这是一个怎么样的城堡?——聆听(神秘、安静、可怕)2、在这个城堡里住着一位老魔法师,听一听,他是一个怎么样的魔法师?——聆听(可怕、法力高强)3、这个魔法师有一件宝贝,是一个小扫把,只要对这个小扫把念动咒语,它就会帮你做任何事情,我们来听一听,这是一个怎样的小扫把?——聆听(调皮、可爱、活泼)我们看到小扫把的乐谱上有许多什么记号?(顿音记号)顿音记号的作用是什么?(跳跃、有弹性)显得小扫把非常的调皮、可爱。让我们来哼唱一下扫把的旋律,注意休止符要空出来,先听老师来哼唱一遍——齐唱。4、城堡里除了魔法师与这个小扫把之外,还住了一个人,它就是魔法师的小弟子,虽然,他做了小巫师,但是魔法师却从来不教他魔法与咒语,每天都让他干许多的粗活,其中,最辛苦的就是挑水了,城堡里有一个大水缸,师傅每天都让弟子去河里挑水把水缸装满,所以,小弟子每天都非常地辛苦,但他却很想学法术,所以,他每天都趁着魔法师念咒语时偷偷地学上几句,有一天,魔法师有事出去了,城堡里只剩下了小弟子一个,如果你是他,你会怎么样?想做什么?——学生答
[幼儿分析] 中班幼儿对周围新奇、有趣的事物和现象有明显的兴趣和好奇心想象力也比较丰富,喜欢探索和提问,教师在活动中从多方面去引导,让幼儿在情景中运用已有的知识和经验,认识到科学的重要性,并去发现问题,探索问题,大胆想象,进行创新。 [设计思路] 中班幼儿有浓厚的好奇心,首先让幼儿观看科幻画,引导幼儿观察,激发幼儿的学习兴趣和好奇心。接下来设置情景让幼儿进行大胆的科学幻想,并相互交流,这个过程不仅发展了幼儿的想象力、创造力,还可以提高幼儿的语言表达能力及团结友爱的精神。然后鼓励幼儿把自己幻想的内容画下来,锻炼幼儿的动手操作能力。画完后对幼儿的作品给予评价、表扬、奖励,让幼儿相互交流自己的作品,体验成功的喜悦,增强自信心。让幼儿认识到环境、资源、生态的重要性,从小形成环保意识。
《巧儿我自幼儿许配赵家》这段曾经风靡全国的唱腔采用的是“喇叭牌子”。传统中这个曲牌用唢呐伴奏,唱词虚词衬字多,曲调简单粗糙。 初排《刘巧儿》时这段唱曾遭到非议,徐文华在几种板式都不理想的情况下,提议用这个曲牌,节奏跳跃灵活,但由于旧评剧中此调比较庸俗,所以要推陈出新。 经改革后的这段“小桥送线”,其前半段,伴奏乐器中去掉唢呐,改为弦乐,细腻传情;过门也变化得长短灵活;演唱时也去掉不必要的衬字;后半部有数板,半说半唱,用高低木鱼和三弦衬托;最后几句对桥下景色的描绘与人物此时的心境融合起来,传神传情。
1、修师德,从勤于育人做起 当您漫步在校园时,您便会发现在这块实验田里,每一天都有一串动人的故事在编织着。在教书育人中我们要努力做到“三心俱到”,即“爱心、耐心、细心”,无论在生活上还是在学习上,时时刻刻关爱学生,特别是对那些特困生,更是“特别的爱给特别的你”,切忌易怒易暴,言行过激,对学生有耐心,对学生细微之处的好的改变也要善于发现,并且多加鼓励,培养学生健康的人格,树立学生学习的自信心,注重培养他们的学习兴趣。 2、修师德,从小小微笑做起 热爱学生,是师德的永恒话题。如何体现教师的爱,如何让学生接受教师的爱,我认为,最简单、最容量做到的、最好的效果是从微笑面对学生做起。
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
小熊说:“风把我的帽子吹跑了,你愿意帮我去找帽子吗?” 小青蛙说:“行啊,母鸡在孵小鸡,我正想给她送蘑菇去当点心,我们边走边找吧。”走啊走啊,他们遇见了小松鼠。 小熊说:“风把我的帽子吹走了,你愿意陪我去找帽子吗? 小松鼠说:“好啊,母鸡在孵小鸡,我正想给她送伞去呢,我们边走边找吧!”他们走啊走,突然小熊发现了粉红色的帽子。帽子在地上,两只小鸡住在帽子里。 鸡妈妈说:“多亏了这顶帽子,要不然,我的宝宝们会着凉的。 小熊采了一片叶子戴在头上。呵呵,小熊又有新帽子了。 活动目标: 1、 通过观察、理解小熊寻找帽子的有关情节,知道帮助别人是一件快乐的事情。 2、 能正确的翻阅图书,并愿意大胆的讲讲、演演故事中有趣的情节。评价: 第一条目标定位单独看比较的合理,既有故事情节的认知也有情感态度,比较的整合。但是从教师还想融合翻阅的学习和讲述表演的能力,那还需要上下调整。 第二条目标中“能正确的翻阅图书”在过程中涉及的不多,因为以大图书阅读为主,而且“正确”是指什么,不太明确。 调整:1、学习有序翻阅图书,了解小熊寻找帽子的有关情节。2、愿意在集体面前大胆的扮演角色,表演情节感知帮助别人是一件快乐的事情。 活动准备:大图书一本、幼儿人手一本小图书、角色头饰、录音故事比较的充足,也都是能为目标达成服务的。 录音:在孩子还没有能比较熟练的有序翻阅期老师可以调整为教师当场讲述故事,根据孩子的行为来调整翻阅的间隔速度。如果孩子能比较熟练的有序翻阅了,那么可以用录音来统一翻阅速度,这是个别的能力弱的孩子老师可以正对性的帮助了。 活动现场记录:
亲爱的同学,我们能接受这样一群优秀的奋中师长的引领,我们享受其中的同时,更要倍加珍惜。然而,多少次,年少轻狂、任性冲动的我们,伤害了老师的感情或是无视老师的劳动成果。一次次,老师都以无比宽广的胸怀和爱包容了我们,同学们我们要用实真实在的行动来感谢和回报我们尊敬的老师,让我们努力成为让老师们欣慰和骄傲的学生,在我们的身上彰显出我们老师的风采,我想,这是献给我们老师最好的问候和祝愿。
3.故事还没完了,没早睡,明明还会怎么样?(引导往安全方面想)上体育课时……我们应该……(早睡早起,每天睡足十小时)在回家的路上……我们应该……(早睡早起,每天睡足十小时)是的麻烦会不断上门。我们应该……(早睡早起,每天睡足十小时)小时:看来充足睡眠能保安全哦!(板书:保安全)如果长期睡眠不足后果更严重。4.演一演师:同学们,明明现在很后悔了,他说一定会早睡早起。真的这样,明明的一天又会变得怎样?让我们时间倒流吧!同学互相讨论,尝试演一演。指名与老师一起演一演。小结:有早睡,多美妙!现实生活可没有时光机。为了健康与安全,我们还要坚持早睡早起,每天睡足十小时。【设计意图:观察书本上的插图,想象人物间的对话故事,换位思考,反思自己没早睡会带来哪些不良的后果。续说故事,明白充足睡眠也是保障生活安全的重要因素。演一演,创设正面教育情境,把“早睡早起”的种子深深种在心里,生根,发芽。】
1、信号灯,斑马线,天桥图片 2、在教师里布置道路场景,包括若干辆玩具小汽车,用纸画出斑马线,信号灯,用平衡木充当的天桥。 3、教学挂图和幼儿用书 活动过程: 1、出示图片,唤起幼儿已有的经验。 教师:(1)、小朋友们,这是什么?你在那里看见过这些东西。 (2)、这些都是在马路上经常会看到的、东西、它们可以帮助和保护人们安全通过,叫做交通设施。。 3使用道具布置道路场景,引导幼儿观看情景表演,了解常见交通的功能。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。