第一道例题提示学生把地基看成一个几何图形,即正六边形,逐步引导学生完成例题的解答。例题1:有一个亭子它的地基是半径为4米的正六边形,求地基的周长和面积(精确到0.1平方米)。第二道例题,我让学生独立完成,我在下面巡视,个别辅导,同时我将关注不同层次学生对本节知识的理解、掌握程度,及时调整教学。最后,引导学生总结这一类问题的求解方法。这两道例题旨在将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想的应用。(七)、课堂小结(1)学完这节课你有哪些收获?(八)布置作业:我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
一、关于教学目标的确定:第五章的主要内容是一元一次不等式(组)的解法及其在简单实际问题中的探索与应用。探索不等式的基本性质是在为本章的重点一元一次不等式的解法作准备。不等式的基本性质3更是本章的难点。可是说不等式的基本性质这个概念既是不等式这一章的基础概念又是学生学习的难点。因此我选择此节课说课。教参指导我们:教学要注重和学生已有的学习经验和生活实际相联系,注重让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。注重“概念的实际背景与形成过程”的教学。使学生在熟悉的实际问题中,在已有的学习经验的基础上,经历“尝试—猜想—验证”的探索过程,体会“转化”的思想方法,体会数学的价值,激发学习兴趣。在教学中要渗透函数思想。运用数学中归纳、类比的方法,理解方程与不等式的异同点。
教学说明:问题(1)是借助“边边边”条件判定三角形全等的知识来解释的。因为三边长度确定后三角形的形状就被固定了,因此三角形具有稳定性。问题(2)可用多媒体展示三角形稳定性在实际生活中应用的例子。要解决问题(3),只需要在四边形中构建出三角形结构,这样就可以帮助其稳定。设计意图:通过学生动手操作,探究三角形稳定性及生活中的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。 (五)总结反思,情意发展问题:通过这节课的学习你有什么收获?多媒体演示:(1)知识方面:①三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。②三角形具有稳定性。(2)技能方面:说明三角形全等时要注意公共边的应用。
5、板书设计 §1.4船有触礁的危险吗 一、船布触礁的危险吗 1.根据题意,画出示意图.将实际问题转化为数学问题. 2.用三角函数和方程的思想解决关于直角三角形的问题. 3.解释最后的结果. 二、测量塔高 三、改造楼梯 五布置课后作业: 习题1.6第12 3题 六、设计说明 具有现实意义和挑战性的内容的设计,激发学生的学习兴趣,使学生乐学。 开放性实践问题和分层作业的设置,满足每个学生的学习需求,使学生愿学。 多样的学习方式和适时引导,提高学生的学习质量,使学生能学。 背景多样,层层递进,适时反思,发展学生的数学思维能力,使学生活学。 当学生乐学、愿学、能学、活学时,就将学会学习,将学习当成乐趣,作为生命中不可或缺的部分,也为学生终生学习奠定良好的基础。
一、教材分析:1、地位与作用:《频率与概率》选自高等教育出版社出版,李广全、李尚志主编的中等职业教育课程改革国家规划新教材《数学》(基础模块)下册,第十章第二节的内容。本节课的最大特点是与人们的日常生活密切联系。而本节课的内容主要包括概率的定义和用频率估计概率的方法,安排1课时完成。本节课的学习,将为后面学习古典概型和用列举法求等可能性事件的概率打下基础,同时也为学生体会概率和统计之间的联系打下基础,在教材中处于非常重要的位置。2、学情分析:本节课的授课对象是高二(2)班的会计专业的学生,女生偏多。学生数学基础较好。学生思维活跃,善于交流,动手操作能力强,对上节课的必然事件、随机事件、不可能事件知识已经理解并掌握,表现欲强。这些特点为本堂课的有效教学提供了质的保障。
一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的
6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是( )A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神. 注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解.七、学习小结:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:(1)理解确定事件与不确定事件;(2)知道不确定事件发生的可能性有大有小;(3)合理运用所学知识分析解决相关问题.目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心.(学生畅所欲言,教师给予鼓励)
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
1.要创造性的使用教材,不拘泥于教材的形式。教材为学生的学习活动提供了基本线索,实施新课程目标、实施教学的重要资源。在教学中要创造性地使用教材。本节课教师通过具体的现实情境,充分利用学生的生活经验,让学生体验到数学来源于生活,打破了传统的注入式的教学模式,通过一系列精心设计把它改成学生所经历的情境引入课题,激发了学生的学习兴趣。在教学中引导学生进行“猜想一实验一分析一交流一发现一应用”, 学生在操作、思考、交流中不断地发现问题,解决问题,极大地调动了学生的学习的积极性,让学生尝到了成功的喜悦,激发了学生的发现思维的火花,经历了一番前人发现这个结果的“浓缩”过程,从而培养了学生独立探究和解决问题的能力。2. 相信学生并为学生提供充分展示自己的机会通过课堂上小组合作掷硬币试验、并展示试验结果的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。
4.已知一个三角形的两边长分别是4cm、7cm,则这个三角形的周长的取值范围是什么?目的:主要是让学生掌握三角形三边的和差关系具体的应用,并能应用生活中实际问题。同学之间可以合作交流互相探讨,发展学生空间观念、推理能力,使学生善于观察生活、乐于探索研究,激发学生学习数学的积极性,从中适当的对学生进行德育教育,教育学生穿越马路时间越长就越危险。(五)课堂小结学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。目的:让学生畅所欲言,谈收获体会,教师给予鼓励。主要是让学生熟记新知能应用新知解决问题,培养学生概括总结的能力、有条理的表达能力。注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
一、教材分析1.教材的地位与作用本节课是在学生学习了三角形的基本概念后,引入图形的全等。这节课探究对象是生活中的常见全等图形,主要是探究全等图形的概念和特征,通过系列学习活动,引导学生体验数学与生活的密切联系,激发学生学习数学的兴趣,培养良好的学习品质。同时这节课的内容也是下一节学习全等三角以及三角形全等的判定的奠基石,它对知识的联系起到承上启下的作用。2.教学目标依据《课程标准》要求本阶段的学生应初步会运用数学的思维方式去观察、分析现实生活中出现的实际问题,体会数学与生活的密切联系,增进对数学的理解和学好数学的信心。因此我确立本节课的教学目标如下:知识技能目标:通过实例,使学生理解图形全等的概念,掌握全等图形的特征,能在不同的图形中识别出全等的图形过程与方法:通过观察,动手实验,培养学生动手操作能力、观察能力以及合作与交流的能力
一.情境引入:师:我们生活在一个变化的世界中,很多东西都在悄悄地发生变化你能从生活中举出一些发生变化的例子吗?生1:从春季到夏季气温在逐渐增加.生2:小树每年都在长高长粗.生3:我杯子里的水喝一口少一口.(说着就拿起杯子喝水,引起同学哈哈大笑)师: 你这个变化中有几个量在变化?生3:两个,一个是喝的口数,一个是水的多少?师: 它们的变化有什么联系吗?生3:有,随着喝的口数的增加,瓶中的水越来越少.生4:那我的这张纸越撕越小(此时该同学顺便从自己本子上撕下一张纸并将这张纸一次一次的撕下去,其他同学们点头称是)师: 你这个变化中又有几个量?它们又是怎么变化的?生4:两个,一个是撕的次数,另一个是纸的大小.师:那么哪个量随哪个量的变化而变化的呢?
《用尺规作三角形》是北师大版《义务教育课程标准实验教科书.数学》七年级下册第五章第五节的内容。在之前的学习中,我们已经学会用尺规作线段和角,而边和角是三角形的基本元素,这节课主要是学习利用尺规按要求做三角形,表面上看是操作的过程,但教科书中提出了有关探究性问题,目的是引导学生关注作图背后的数学思考,即用尺规作三角形用到了两个三角形全等的条件,因此本课教学应引导学生积极思考,使学生体会到作图的每一步骤都是有根 有 据的.二、教学目标分析参照《课程标准》的要求及教材的特点,考虑到学生已有的认知结构和心理特征 ,我制定了如下教学目标:1、知识与技能:1.会用尺规按要求作三角形:已知三边作三角形,已知两角及夹边作三角形,已知两边及夹角作三角形.2.会写出三角形的已知、求作、作法. 3.能对新作三角形给出合理的解释.
此题的设计目的:及时的练习一是起到巩固新知识的目的,二是及时了解学生掌握新知识的情况,起到反馈的目的。这样设计的依据是:小题多,是让更多的学生参与到学习中来,及时给予他们更正,更多的是对他们的鼓励和表扬,有简单的题尽量让基础不太好的的学生去说,以让他们感受到成功的乐趣;并且《新课标》中指出课程内容应处于学生“最近发展区”的范围以内,让成功始终伴随学生学习的旅程,以保证学生不会因过多的失败而放弃他们的努力,失去发展的机会。第四环节:师生合作,归纳总结。先由学生个人总结,然后教师补充。设计目的:通过学生个人小结,教师可以了解学生掌握知识的情况,培养学生总结概括的能力,教师补充起到完善所学知识的目的。第五环节:布置作业,巩固提高。设计目的:因材施“作业”,分层次布置作业,减轻学生的负担,全面推行素质教育,让学生学有用的数学,不同的学生学习不同的数学,在数学中得到不同的发展,以求彰显学生的个性。
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。3,讲解补充例题,例1:判断:①x=2是不等式4x<9的一个解.()②x=2是不等式4x<9的解集.()例2、将下列不等式的解集在数轴上表示出来:(1)x<2(2)x≥-2(设计意图:例1是让学生理解不等式的解与不等式的解集。联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)4.巩固练习:课本44页练习2,3题5.归纳总结,结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。6.作业:课本49页习题1,2题
注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)设计意图:通过观察图片和回顾以前的知识,使学生由感性认识上升到理性认识。通过描述平行四边形的特点和定义,也培养了学生的语言表达能力。同时也渗透了一些由实际问题转化为数学问题的“转化”的数学思想。(三)、引导实验探索新知【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.动手操作并思考:让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图.(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?解:(1)当40≤x≤50时,则降价(50-x)元,则可多售出3(50-x),所以y=90+3(50-x)=-3x+240.当50<x≤70时,则升高(x-50)元,则可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.因此,当40≤x≤70时,y=-3x+240.(2)当每箱售价为x元时,每箱利润为(x-40)元,平均每天的利润为W=(240-3x)(x-40)=-3x2+360x-9600.
注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。
设计说明:设计这组测验为了反馈学生学习情况,第1题较简单,也是为了让提高学生学习士气,体会到成功的快乐;第2题稍微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采用抢答方式调动学生积极性,学生抢答,师生共同反馈答题情况,教师最后出示正确答案并做总结性评价.环节十:布置作业课件演示: 拓展延伸1.思考:经过4个(或4个以上的)点是不是一定能作圆?2.作业:A层 课本118页习题A组1,2,3; B层 习题B组.设计说明:设计第1题的原因保证了知识的完整性,学生在探究完三个点作圆以后,肯定有一个思维延续,不在同一直线上三个点确定一个圆,四个点又会怎样?四个点又分共线和不共线两种情况,不共线的四点作圆问题又能用三点确定一个圆去解释,本题既应用了新学知识,又给学生提供了更广泛地思考空间.第2题,主要是让学生进一步巩固新学知识,规范解题步骤. 在作业设计时,既面向全体学生,又尊重学生的个体差异,以掌握知识形成能力为主要目的.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。