一、 说教材《百分数》是义务教育人教版小学数学第十二册第二单元的内容。它是在学生学习了运用百分数解决实际问题的基础上来进行教学的。多数同学在日常生活中通过新闻媒体、购物等对折扣多少有所接触、了解。因此根据学生现状,需要教师规范、指导形成系统的概念,联系生活实践来展开教学。使学生理解折扣意义,懂得打折时原价、现价和折扣三者之间的数量关系。因此结合本课知识特点及课程标准的要求,我确定了本课的教学目标及教学重点、难点。【教学目标】⒈ 识与技能:通过丰富多彩的学习情境,使学生理解打“折”的意义和计算方法,并能合理、灵活地选择方法,正确地列式计算。⒉ 过程与方法:通过各种学习活动,让学生经历用“折扣”知识解决生活中的实际问题的过程,提高学生运用数学知识解决实际问题的能力。同时培养学生善于观察、乐于思考、敢于表达的良好学习习惯。⒊ 情感态度与价值观:使学生体验到到生活中处处有数学,激发学生学数学、用数学的兴趣。【教学重点】沟通“折扣”与百分数之间的联系,会合理、灵活地运用 所学知识解决生活中的实际问题。【教学难点】会合理、灵活地运用所学知识解决生活中的实际问题。
(一)激趣导入。 一、创设情境,引入新课(课件第2张)1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。2.抢答:请同学们以最快的速度说出下面的数有几个因数。师出示数,学生抢答因数的个数。3.思考:(1)一个数的最小因数是几?最大因数是几?(课件第3张)(2)一个数的因数是有限的还是无限的?(3)怎样找一个数的因数?生1:一个数是最小因数是1,最大因数是它本身。 生2:一个数因数的个数是有限的。生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。 【设计意图】用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。(板书课题) . (二)探究新知 1. 找出1—20各数的因数,看看它们的因数的个数有什么规律。(1)学生小组内交流,写出1——20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)1的因数有:1 11的因数有:1,11 2的因数有:1,2 12的因数有:1,2,3,4,6,12 3的因数有:1,3 13的因数有:1,13 4的因数有:1,2,4 14的因数有:1,2,7,14 5的因数有:1,5 15的因数有:1,3,5,15 6的因数有:1,2,3,6 16的因数有:1,2,4,8,16 7的因数有:1,7 17的因数有:1,17 8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18 9的因数有:1,3,9 19的因数有:1,19 10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
(一)复习旧知,导入新课。1、师:同学们,你们还记得《乌鸦喝水》的故事吗?我们先来看一看这个故事吧!(课件第2张播放视频《乌鸦喝水》)【设计意图】用视频引入课题,激发学生的学习兴趣。2、乌鸦是怎么喝到水的?为什么?(课件第3张)生1:乌鸦把石子投进水罐中,水面升高了,乌鸦就喝到水了。生2:这说明石子占了一定的空间,所以水面会升高,乌鸦才能喝到水。师:这节课我们就来研究一下体积和体积单位。(板书课题)(二)探究新知1.小组实验并观察:(课件地4张)(1)取两个同样大小的玻璃杯,先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒进第二个杯子里,会出现什么情况?为什么?(2)汇报交流:(课件第5张)生1:第一个杯子里的水不能全部倒入第二个杯子里。师:你知道为什么会出现这种现象吗?生2:鹅卵石占了一定的空间,所以第一个杯子会剩下一部分水。【设计意图】用实验的方式,让学生从实验的过程中发现现象并进一步思考原因,从而找到规律,培养学生的观察能力、思维能力。2.下面的洗衣机、影碟机和手机,哪个所占的空间大?(课件第6张)洗衣机所占的空间最大。3.引入体积的意义:师:物体所占空间的大小叫做物体的体积。师:上面三个物体,哪个体积最大?哪个体积最小? 生:洗衣机的体积最大,手机的体积最小。4.学习体积单位(课件第7张)(1)怎样比较下面两个长方体体积的大小呢?
(一)复习导入 1.师:我们学过了因数的有关知识,下面老师就检验一下,看你们学得怎么样?(课件第2张)(1)24的因数有(1,2,3,4,6,8,12,24),30的因数有(1,2,3,5,6,10,15,30),24和30的公因数有(1,2,3,6),它们的最大公因数是(6)。(2)分数的分子和分母同时(乘)或(除以)一个(相同的数)(0除外),分数的大小(不变),这叫做分数的基本性质。【设计意图】复习旧知,约分的根据是分数的基本性质,要约成最简分数,需要分子和分母同时除以它们的最大公因数,所以复习环节设计了这两个知识点的练习,为学习新知识做准备。2.大家一定都喜欢孙悟空吧!你知道孙悟空最大的本事是什么吗?(72变)这节课我们就来创造第73变——变分数!(二)探究新知 1、探究约分的方法。(1)把化成分子和分母比较小且分数大小不变的分数。(课件第4张) 小组讨论:你是怎么想的?汇报交流(课件第5张)生1:可以用分子和分母的公因数(1除外)去除。生2:我用24和30的公因数2去除,,然后再用12和15的公因数3去除, 生3:我直接用24和30的最大公因数6去除。(2)用自己的话说说什么是约分?(课件第6张)生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
师生一起听赏,然后,我弹奏乐曲,学生视唱乐段。在视唱过程中划出第三部分结构(由两个乐段和尾声构成)。并一起总结第三部分最明显的特点:再现了旋律A。并且将两段旋律进行对比:第三部分旋律较旋律A的情绪要欢快、激昂。我再启发学生说出这一部分是由哪些乐器演奏的,及分别表现了怎样的场景?由于之前分析的过程中,学生们对部分乐器都比较熟悉了,所以,问题提出之后,他们很快就找到了所有出现的乐器:小号奏出了粗犷、热情的旋律,与后面小提琴奏出的轻快、跳跃的旋律形成了鲜明的对比,表现了一幅小伙子与姑娘对舞的场面。最后,完整地将乐曲听赏一遍,感受不同部分的不同情绪,全班再次分男女生进行即兴表演,在合作学习中将音乐升华。4.拓展延伸完整地欣赏乐曲之后,我将学生分小组进行讨论:用怎样的方式来表现音乐,第二部分最好用舞蹈来表现。
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
如图,四边形OABC是边长为1的正方形,反比例函数y=kx的图象经过点B(x0,y0),则k的值为.解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=kx图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1.方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号.三、板书设计反比例函数的性质性质当k>0时,在每一象限内,y的值随x的值的增大而减小当k<0时,在每一象限内,y的值随x的值的增大而增大反比例函数图象中比例系数k的几何意义通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
四、范例学习、理解领会例2 某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?学生画图、 实验、观察、探索。五、随堂练习课本随堂练习 学生观察、画图、合作交流。六、课堂总结本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不 同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比 例.
解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.探究点四:三视图中的计算如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.
三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)= 四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 五、课堂小结,回顾新知1. 利用树状图和列表法求概率时应注意什么?2. 你还有哪些收获和疑惑?
(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)=;(3)试估算盒子里黑球有多少个.解:(1)0.6(2)0.6(3)设黑球有x个,则2424+x=0.6,解得x=16.经检验,x=16是方程的解且符合题意.所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?