2.过程与方法 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。3.情感态度与价值观 (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 【教学重点】 理解、掌握“三角形任意两边之和大于第三边”的性质;理解两点间的距离的含义。【教学难点】 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、学具袋【课时安排】 1课时【教学过程】(一)复习导入 师:什么样的图形叫三角形?生交流:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
(一)观图激趣、设疑导入 1、(PPT课件出示复习题)2、引导学生复习比例尺是图上距离与实际距离的比,并进行相应的计算。生1:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。生2:图上距离∶实际距离=比例尺或=比例尺。(PPT课件出示问题)在一幅地图上量得A地点到B地点的图上距离是5 cm,已知这幅地图的比例尺是1∶4000000,那么A地点到B地点的实际距离是多少千米?师:在这里已知的条件有哪些?生1:知道两地的图上距离是5 cm。生2:知道比例尺是1∶4000000。师:要解决的问题是什么?生:计算两地的实际距离是多少千米。师:这节课我们就接着来学习比例尺的应用,学习如何利用比例尺来解决实际问题,也就是已知比例尺和图上距离,求实际距离。(板书课题)【设计意图】通过把复习题中的习题变换已知和未知条件来变成本节课要解决的问题,使学生产生浓厚的兴趣,并且,也有助于培养学生举一反三、触类旁通的能力,使学生认识到数学知识的灵活性。(二)探究新知探究学习例2,已知比例尺和图上距离,求实际距离。1、PPT课件出示P54例3。下面是北京轨道交通路线示意图。地铁1号线从苹果园站至四惠东站在图中的长度大约是7.8 cm,从苹果园站至四惠东站的实际长度大约是多少千米?2、引导学生分析探究:师:从例题中可以知道哪些已知条件?生:可以知道两站的图上距离大约是7.8cm。师:这是从题目中直接读出来的,那么从所给的图中还能观察到什么条件呢?生:可以知道比例尺是1∶400000。布置学生小组讨论怎么样解决问题。学生以小组为单位进行合作学习,教师进行指导。3、汇报学习成果,师生共同探究:师:你们是怎么解答的?生1:通过列方程来解答的。生2:根据题意,可以先设实际长度为x cm,再根据“图上距离∶实际距离=比例尺”,列方程解答。师:解答时要注意什么?生1:要求实际距离是多少千米,但已知的图上距离是多少厘米,可以先设实际距离为x cm,算出实际距离的厘米数后,再化成千米数。生2:根据“图上距离∶实际距离=比例尺”,可以用解比例的方法求出实际距离。4、完成解答:(板书解题过程)图上距离:实际距离=比例尺解:设从苹果园站到四惠东站的实际长度是x cm。=x=7.8×400000x=31200003120000 cm=31.2 km答:从苹果园站到四惠东站的实际长度大约是31.2 km。5、拓展延伸:师:我们除了用方程解答之外,还可以用什么方法解答?生:可以用算术方法解答。师:可以怎样来分析呢?生:在“图上距离∶实际距离=比例尺”中,实际距离既可看成分数的分母,又可看成除法中的除数,所以可得出实际距离=图上距离÷比例尺。师:我们来共同完成解答:(板书过程)图上距离:比例尺=实际距离7.8÷=3120000(cm)3120000 cm=31.2 km答:从苹果园站到四惠东站的实际长度大约是31.2 km。6、牛刀小试。(1)师:我们一起来做两个练习题,看我们对新知识的掌握程度如何。(PPT课件出示)①教材P54做一做。先把教材P54做一做的图中的线段比例尺改写成数值比例尺,再用直尺量出图中河西村与汽车站之间的距离是多少厘米,并计算出两地的实际距离大约是多少。
3、画集合图在人数确认后,就让学生来分别指一指喜欢语文的和喜欢数学的以及两样都喜欢的。引导学生用黄颜色的笔圈出喜欢语文的同学。用红颜色的笔表示出喜欢数学的同学。让学生自己来思考、探索解决问题的方法,通过学生的操作与实践去发现、经历和体会集合图形成的过程,从而形成表象。让学生画圈,使画出集合图水到渠成,也让学生进一步体验到集合图的直观形象、简洁明了的作用。4、经过刚才的演示、讨论、交流,想想看,图该怎样改动?师生共同完成展示图的修改。5、学生修改自己的设计,同桌互查。只有给学生充足的时间“做数学”,画、说、站、调整……这样学生才能实现对新知识的自我建构。6、各部分的意义讨论各部分的意义。重点是让学生说清楚集合图各部分的意义,并在此基础上知道那些数学信息。
教学说明:问题(1)是借助“边边边”条件判定三角形全等的知识来解释的。因为三边长度确定后三角形的形状就被固定了,因此三角形具有稳定性。问题(2)可用多媒体展示三角形稳定性在实际生活中应用的例子。要解决问题(3),只需要在四边形中构建出三角形结构,这样就可以帮助其稳定。设计意图:通过学生动手操作,探究三角形稳定性及生活中的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。 (五)总结反思,情意发展问题:通过这节课的学习你有什么收获?多媒体演示:(1)知识方面:①三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。②三角形具有稳定性。(2)技能方面:说明三角形全等时要注意公共边的应用。
设计意图:知识的掌握需要由浅到深,由易到难.我所设计的三个例题难度依次上升,根据由简到难的原则,先让学生学会熟悉选用公式,再进一步到公式的变形应用,巩固知识.特别是第三题特别强调了运用法则的前提:必需要底数相同.为加深学生对法则的理解记忆,形成“学以致用”的思想.同时为了调动学生思考,接下来让学生进入反馈练习阶段,进一步巩固记忆.4、知识反馈,提高反思练习1(1)口答设计意图:根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解后,通过让个别同学上黑板演演,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.同时,在活动中引起学生的好奇心和强烈的求知欲,在获得经验和策略的同时,获得良好的情感体验.
4、巩固新知,拓展新知(羊羊竞技场)本环节在学生对性质基本熟悉后安排了四组训练题,为避免学生应用性质的粗糙感,以小羊展开竞技表演为背景,让学生在轻松愉快的氛围中层层递进,不断深入,达到强化性质,拓展性质的目的。提高学生的辨别力;进一步增强学生运用性质解决问题的能力;训练学生的逆向思维能力,增强学生应变能力和解题灵活性.5、提炼小结完善结构(羊羊总结会)“通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法?”引导学生自主总结。设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习。以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考。6、课堂检测,发展潜能(大战灰太狼)
五、巩固运用 深化理解1、教材28页上的第一道练习题,请个别学生到视频展台做此题,2、游戏巩固老师左手拿一个三角形,右手拿一张卡纸遮住三角形的两个角,只露出一个角,让学生猜这会是什么样的三角形? 设计第一道练习题目的在于巩固新知,形成技能,培养学生联系新知识,灵活解决问题的能力。当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用学生喜闻乐见的游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。六、总结评价,体验成功让学生谈谈经过自己动手操作、小组合作、自主探索发现的三角形分类方法及各种三角形特征,不仅及时有效地巩固所学知识,训练学生的语言表达能力,而且可以使学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。
教师随着学生的回答用卡片拉出0.6000000…00[约有1.5米长],问:大小变了吗?[学生非常惊奇和振奋地说:没变!]如果它末尾的0像北京奥运圣火那样穿越五洲四海,它的大小变吗?[学生异口同声:不变!]也就是说与0.600大小相等的小数有多少个?师:在这无数个小数中,最简单的是哪一个?师:当我们遇到小数末尾有零,可以去掉末尾的零,写起来更简便,这就叫做小数的化简。(板书化简)说说是根据什么进行化简的?师:你能把0.40 1.850 2.900 0.080 12.000化简吗?请大家打开数学书59页做一做第一题,写在数学书上。【0.080】师:这个0为什么不去掉,去掉会怎么样?【12.000】师:运用小数的性质,我们可以把三位小数化简成整数。师:那你觉得在运用小数的性质化简小数的时候,应该注意什么?
情景感知概括运用设疑诱导动手操作合作交流尝试活动启发引导类比发现演练结合观察分析自主探索问题讨论利用尝试活动“我来当老师!”给学生提供设计问题的机会,培养他们实事求是的科学态度,勇于质疑、敢于创新的良好习惯及数学应用能力。例1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?通过罗列一些似是而非、容易产生错误的对象让学生辨析,促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构。例2:解答下列问题:(1)993-99能被99整除吗?能被98整除吗?能被100整除吗?(2)求代数式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。让学生进一步体会用分解因式解决相关问题的简捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),则m=,n=。
活动四:自主学习,尺规作图先阅读,再尝试作图,思考作图道理,小组讨论,“为什么作图过程中必须以大于1/2AB的长为半径画弧?”同桌演示尺规作图。最后折纸验证,使整个学习过程更加严谨。我将用下面这个课件给学生展示作图过程。再次回顾情境,让学生完成情境中的问题。(三)讲练结合,巩固新知第一个题目是直接运用性质解决问题,比较简单,面向全体学生。我还设计了第二个题目,想训练学生审题的能力。(四)课堂小结在学生们共同归纳总结本节课的过程中,让学生获得数学思考上的提高和感受成功的喜悦并进一步系统地完善本节课的知识。(五)当堂检测为了检测学生学习情况,我设计了当堂检测。第一个题目,让学生学会转化的思想来解决问题;第二个题目练习尺规作图。
这样设计,既复习了新课所必备的旧知,又自然合理地引入新课,一开始就紧紧吸引了学生的注意力,激发起学生的求知欲。(二)探索新知1、质数和合数的意义(教学例1)。(1)让学生拿出印发的写有例1原题的练习纸,利用学过的求约数的方法,写出1-12每个数的所有约数。(2)按照约数个数的多少进行分类,提出以下问题让学生讨论:①每一个数约数的个数相同吗?各有多少个约数?②按照每个数的约数个数的多少,可以把这些数分成几类?你认为是一类的用同一符号标出来。检查学生讨论情况并提问:你是怎样分的?为什么这样分?每一类各包括了哪几个数?让学生充分发表意见,然后师生共同归纳,并用投影出示三种分类情况:
教学新课1.教学例2。出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。2.教学例3。出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。3.教学“试一试”。提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?巩固练习1.做“练一练”。指名四人板演。其余学生分两组,每组两道题,做在练习本上。
师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是“+”在这里读着“正号”,“-”在这里读着“负号”。这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。
本课内容是普通学校教材,主要针对的是普通学校学生,主要包括了四个知识点,第一个问题由拨计数器的情境出发,从序数的角度,由千以内的数和一千之间的关系引出对“千”的认识。第二个问题结合拼摆小方块的活动,体会“个”、“十”、“百”、“千”之间的十进关系,直观感受“千”的大小。第三个问题就是结合数数活动进一步感受“千”的意义,掌握三位数的数数方法。第四就是安排的“试一试”,集合估计和对比想象的活动,发展学生的数感。针对普通学生这是2课时的内容,第一课时安排解决前三个问题,这对于我们听障学生来说课时容量太大,另外今天是微课只有30分钟,尤其是第三个问题数数更是难点,遇到9加1变十、99加1变百、999加1变千时的转化更是难点,所以本节课我只安排了第一和第二个问题,并且在教学第一个问题“千”的引入中加入“9加1变十、99加1变百、999加1变千”的内容,为学生下节课学习数数分散了难点,提前做好了铺垫。
2、试一试。给学生每人一张6×6的方格图,让学生在方格图中根据黑板的统计表画出条形统计图。学生会兴趣盎然地拿起笔画起来。画着画着,就会有学生发现格子不够。此时,我会抓住这一有意的预设,佯装问学生:什么格子不够啊?学生会争着举手说出自己的发现。接着,我会问,那怎么办啊?你们有什么好主意吗?学生思考之后,小主意会一个接一个出现。有人会说:在上面加格子啊。还有人会说:画到顶之后,再接着从下面画。根据学生的主意,我会一一故意设障,比如说:格子上面已经有标题了,无法加格子了。又比如说:建一栋10层的楼房,能不能建到8层以后,再双从地面上建2层,这还算是10层楼吗?经过这一激烈的对话,自然就会有人说:能不能一格表示2?这正是教者我想要的答案。于是接着让学生试着画条形统计图。画着画着,也会有学生提出:一格表示2,那么3怎么表示啊?这个问题我可以不直接回答,而是集思广义,让学生说出怎么办。
一、教材分析《歌手大赛》是北师大版材四年级下册第一单元《小数的意义和加减法》的最后一课,实质教学内容是小数的加减混合运算。它是在学生已经熟练掌握了整数的混合运算,认识了小数的意义和性质,掌握了用竖式计算小数加减法的基础上安排的教学内容,是数的运算中不可缺少的内容。教学目标:知识目标:结合具体情境,能正确进行小数加减混合运算,并能选择简单的方法进行计算。能解决简单的小数加减法的混合运算的实际问题,增强数学应用意识。能力目标:能熟练运用小数加减法,通过对“谁的总分高”的探究,让学生自己先估算,再组织学生独立探究,并在全班进行交流,增强学生的计算能力及解决实际问题的能力。情感目标:使学生在参与、思考、交流的过程中,体验获取知识的快乐。
五、总结与谈感受师:今天,我们学习了“比多少”(出示课题),同学们学会了用“多一些、少一些、多得多、少得多”来说明两个数之间的大小关系,还玩了猜数游戏,你们觉得这样的学习有趣吗?有什么感受呢?[总评]本课教学设计体现如下几个特点:1、 注重创设生活情境。从学生熟知的生活事例,感兴趣的事物(三缸小金鱼)引入,为学生提供了富有生活气息的具体情境。学生在具体情境中学习兴趣浓厚,积极性高涨,课堂气氛活跃,使学生以最佳的思维状态投入到学习中。2、注重体现学习方式。这节课学习过程,既注重培养学生独立思考的学习习惯,也注重培养学生合作交流的能力,不但学生个性思维方法得到了充分的展现,而且学生在合作交流中获取自己需要的信息,利于学生全面的发展。3、注重创设轻松课堂。猜数游戏的设计,创设了轻松愉快的课堂氛围,学生这样氛围中增长了知识,提高了能力,达到了寓教于乐的教学课堂境界,对学生学习数学兴趣产生不可量化的效果。
读数时,先读十位上的数,再读个位上的数,十位上是几就读几十,个位是几就写读几,这个数读作“二十四”。设计意图:(由用小棒表示数过渡到用计数器上的珠子来表示,使学生初步理解数位的意义,会利用计数器正确读数、写数。)(4)教师出示4捆和2根小棒(即42根小棒),用同样的方法完成以上过程。当学生写出并读出42以后,让学生对比24与42中的“4”、“2”的意义,加深对不同数位上的数所表示的意义的理解。(设计意图:通过42与24的对比,加深对不同数位上的数所表示的意义的理解。)2.教学例5(1)第一行3题让学生独立完成,读给同桌的同学听,最后集体订正。(2)第二行第1题教师引导学生观察,十位上有4颗珠子,个位上一个也没有,试问:这个数该怎么写呢?学生回答后,教师板书“40”,并强调“当个位上一个也没有时,要用0占位”。
一、注意联系生活实际创设数学活动。教学要成功就必须要激发学生的兴趣和求知欲,让学生积极主动地参与到学习过程之中,使学习成为他们迫切的需要。“玩”是儿童的天性,在设计这节课时,我注重让学生在活动中体验数学知识,做到“在玩中学,在学中练”,完成了由知识到能力的升华。这节课一共设计了三个紧密联系的活动。1.活动一,到小精灵购物广场去买东西。这个活动由小淘气带领大家到小精灵购物广场去买东西,通过购物这个具体情境,让学生学会简单计算,学会计算的思考过程和如何付钱的方法,并体会到付钱的方法有多种形式。2.活动二,到游乐场去。恰逢六一儿童节即将来临,根据学生的喜好,创设了到游乐场去玩的情景,用20元钱去游乐场活动,你想做那些游戏呢?这个题目是在20元这个范围内,让学生进行有关元、角、分的计算。通过这个情境使学生进一步学习有关元、角、分的知识。3.活动三,合伙开百货店。
低年级儿童好奇、好动,知识的学习和巩固应考虑儿童的年龄特征,因此,学生的学习应以活动为主,从学生的兴趣入手。基于学生在生活中已经对“左右”积累了一定的感性经验,但不一定准确判断的情况下,我给学生充分的时间和空间,让学生通过说、找、做、摆、看、练的活动,逐渐加深对“左右”的位置关系的认识。1、说。是从生活经验入手,说左右手分别能做哪些事,这是对左右的初步认识。2、找。是找像左右手这样的好朋友,这是对左右的进一步了解。3、做。这是听口令做动手的小游戏。除了能调动学生的学习积极性,还能加深学生区别左与右。4、摆。通过摆学具,使学生把对左右的认识变成得心应手的知识。5、看。这是让学生观察由于他们的转动,右边事物的不同,初步体验左右的相对性。6、练。达到巩固认识“左右”的位置关系,培养学生会运用所学知识解决生活中的实际问题的能力,体验数学与生活的密切联系。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。