二、存在问题及下步打算总结ZT教育开展情况,虽然整体上较为顺利,但对照上级要求、群众期望和发展需要还有一定不足。主要表现在:一是学习浮于表面,不深入不具体,效果不理想。个别D员对ZT教育重要性认识不足,有时忙于工作,存在以业务学习代替理论学习、缩小范围选择性学习的现象,政治理论学习缺乏主动性,图完成任务,学深悟透、知行合一做得不好。二是理论学习研讨深度不够,不能活学活用,用理论指导实际工作。有的D员学习研讨被动应付,将理论分析的多,结合实际具体工作的少,没有真正将理论知识应用于实践,没有真正用的D的最新理论创新工作思路,解决实际问题。三是调查研究不深不细,了解情况不具体,解决措施不明确。有的D员还没有真正沉下心来,带着问题到一线了解实际情况,存在以座谈、走访代替调研的情况,了解实际情况不细致,没有真正发现实际问题。针对问题拟定的措施针对性不够,解决问题还不彻底。
局始终把支持、服务和保障企业发展作为重点,细化服务举措,重点护理走访联系服务单位,帮助解决队伍审批中的困难等,主动介入,为企业提供一体化队伍联动服务,切实把贴身服务送到了企业生产和群众生活的最前沿。此外,局还对在走访过程中了解到的各类问题进行梳理,认真查找自身原因,积极落实各项措施。对走访了解到的队伍管理和服务需求,从方便群众办事、便于企业生产发展出发,简化办事程序、提高办事效率等方面入手,切实帮助群众、企业解决实际困难。三是关爱民警凝聚警心。确立“从严治警是最大从优待警”理念,落实干部群众谈心谈话制度,及时发现纠正违纪隐患苗头,防止队伍内部出问题。同时本着心系基层、情系干部群众的要求,推出了一些列暖兵心、聚兵心、得兵心的实事好事,进一步增强广大干部群众献身队伍事业的热情。同时各单位还结合自身实际,合理安排文体生活,陶冶干部群众情操,鼓舞队伍士气,打造和谐温暖的警营氛围。
一、说教材我今天执教的《做家务》是北师大版小学数学第三册第四单元的。这部分内容是在学生初步认识了乘法的基础上学习的,是学生编写乘法口诀的开端。这部分把乘法口诀以及它的意义结合在一起,有利于学生理解口诀的结构。教材让学生参加编口诀的活动,体会编口诀的方法,逐步学会编乘法口诀,在编写口诀的过程中知道一些探索知识的方法,提高学习数学的能力和积极性。乘法口诀是小学阶段的一个重要基础知识,是学生必须练好的基本技能之一,是以后学习多位数乘、除法必备的知识。教学目标:1、结合“摆筷子”的具体情境,经历编制2的乘法口诀的过程,进一步体会编制乘法口诀的方法。2、掌握2的乘法口诀,会用已学过的乘法口诀进行乘法计算,掌握并能够熟练地运用。从而去解决简单的实际问题。
我今天说课的内容是新北师大版小学三年级数学上册第六单元第4课《去奶奶家》。这节课的内容是学生掌握一位数乘两位数和三位数的基础上,借助线段图,简化原题,找到破题思路,提高学生运用乘法和混合运算解决实际问题的能力。导学目标:使学生学会分步解答含有四个已知条件的三步应用题,在理解数量关系的基础上,明确破题思路,掌握解决方法;培养学生画线段图的习惯和能力。教学重点:理解三步应用题的数量关系,掌握分步解答的方法。教学难点:明确破题思路,熟悉应用线段图解决问题。知识链接:一位数乘两位数和三位数的算法。教具准备:PPT多媒体。预习内容:教材P58,因为本节课要教会学生画线段图解决问题,教学内容较多,所以在预习时留了三个问题引导学生做好预习。1、能将所有数学信息用线段图完整表示,并说出线段图的优点;2、分别用分步式和综合式解决问题;3、在地图上标2小时后的位置,并说出这样标的原因。
课程:数学课题: 3.1.1函数的概念课型:讲授课课时:2课时授课班级:2015级南口班授课时间:2016年3月1日授课地点:南口校区教 学 目 标知识目标1.能用函数语言描述图像、解析式中自变量与函数值的依赖关系; 2.会计算函数的定义域,理解值域的含义 3.会用语言表述自变量与函数值间的对应关系能力目标通过对实例的分析,培养学生的观察能力,抽象概括及逻辑思维能力 通过计算函数的定义域,培养学生的计算能力素养目标函数概念的思想蕴含了很多数学思维,也渗透生活中及其他学科范围内,通过学习使学生认同函数的抽象性。教学重 点理解函数的概念教学难 点判断两个函数是否相同教学方 法引导启发,讲练结合教学资 源演示文稿板 书 设 计3.1函数的概念 设集合A、B为非空数集,对于确定的对 应法则f下,在集合A中取定任意一个数x, 在集合B中都有唯一确定的数f(x)与之相 对应,则称f:A→B为集合A到集合B的一 个函数. 记作:y=f(x),x∈A X叫自变量,y叫函数值,集合A叫函数的 定义域,所有函数值组成的集合叫值域。
②癌症患者在治疗过程中,会有很大的身体损耗,而黄鳝有很好的滋补作用,适当吃一点黄鳝,既能够为患者补充营养,也能够提高患者的身体免疫力。 (来源于报纸)经过讨论交流,每一组一名同学自主发言,老师点拨,最后形成小结。看来源 要权威发布,不要道听途说看内容 要事实清晰,不要模糊遗漏看立场 要客观公允,不要情绪煽动看逻辑 要严谨准确,不要简单断言情感判断 理性判断 理性表达(四)活动三,重实践新课标提到,语文课程应引导学生在真实的语言运用情境中,通过自主的语言实践活动,积累经验,把握规律,培养能力。据此,我设计了以下贴近学生生活、可参与性强的活动。多媒体展示案例,仍然是先讨论交流,再自主发言,说出案例有哪些问题。这是某校园论坛上的一则寻物启示。
概括出祖母的形象:祖母是一位对我恩重如山,身缠重病,风烛残年的老人。(紧扣“婴”,)了解作者身世:“生孩六月,慈父见背;行年四岁,舅夺母志。祖母刘,悯臣孤弱,躬亲抚养。臣少多疾病,九岁不行,零丁孤苦,至于成立。既无伯叔,终鲜兄弟;门衰祚薄,晚有儿息。外无期功强近之亲,内无应门五尺之僮。茕茕孑立,形影相吊。”(概括明确:“孤苦”“孤弱”,突出“孤”)【先分析“应该尽忠”和“不得不去尽忠”,再分析“不能去尽忠”,避免了串讲课文的平淡与枯燥,使课堂有了波澜。】(三)追问探究,察理析忠孝问题:只说自身孤苦、祖母多病是“以情动人”,或许能打动一个君王,但是对于像晋武帝这样一个君王就很难说了。晋武帝究竟是一个什么样的君王?李密又是用什么理由说服他的呢?其间体现了作者怎样的机变和才智呢?
4、学习任务三:品读,赏析特色,深入探究。(解决“为什么这么陈情“的问题)文学史上,以获得“高难度”的险助而又收“高效率”奇功的,首推李密的《陈情表》。“抗君命”、“逆圣旨”,李密是为“辞不赴命”而上书的。让学生再读课文,结合导学案中的背景介绍,思考作者为什么这样陈情。 【方法导引】再读文本,深入思考作者除了从亲情入手打动晋武帝,还从哪些方面陈情以达到自己想要的效果?要求:独立思考,小组合作,梳理归纳,到黑板上展示。教师补充归纳:本文出于情,归于理,先动之以情,再晓之以理。李密是亡国旧臣,惹恼晋武帝,会被株连九族。先以祖孙相依为命的亲情凄切婉转的表明心意,唤起晋武帝的怜悯之心,再以“报国恩”“徇私情”的两难和朝廷以“孝”治国以及自己为官追求等,打消皇帝疑虑,最终提出先尽孝后尽忠的解决方案,以情动人,构思缜密。整篇《陈情表》密布着感情的浓云,陈情于事,寓理于情,凄恻动人。
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
1.小明调查了班级里20位同学本学期计划购买课外书的花费情况,并将结果绘制成了下面的统计图.(1)在这20位同学中,本学期计划购买课外书的花费的众数是多少?(2)计算这20位同学计划购买课外书的平均花费是多少?你是怎么计算的?反思?交流*(3)在上面的问题,如果不知道调查的总人数,你还能求平均数吗?2.某题(满分为5分)的得分情况如右图,计算此题得分的众数、中位数和平均数。活动4:自主反馈1.下图反映了初三(1)班、(2)班的体育成绩。(1)不用计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗?(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?(3)如果依次将不及格、及格、中、良好、优秀记为55、65、75、85、95分,分别估算一下,两个班学生体育成绩的平均值大致是多少?算一算,看看你估计的结果怎么样?*(4)初三(1)班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的理由吗?
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?根据所给条件写出简单的一次函数表达式是本节课的重点加难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。类比出一次函数关系式的一般式的求法,以此突破教学难点。在学习过程中,我巡视并予以个别指导,关注学生的个体发展。经学生分析:(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);(2)当x=1760时,y=0.05×(1760-1600)=8(元);(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600) X=1984五.教学效果课前:通过本节课的学习,教学目标应该可以基本达成,学生能够理解一次函数和正比例函数的概念,以及它们之间的关系,并能正确识别一次函数解析式,能根据所给条件写出简单的一次函数表达式,且通过本节课的学习学生的抽象思维能力,数学应用能力都能有所提升,
学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。学习重点:探索实际问题中蕴涵的关系和规律。学习难点:用字母、运算符号表示一般规律。学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图形需要几个五角星?(3)摆成第2015个图形需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第2015个图形需要6045个五角星.方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观.
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
每一个生命都弥足珍贵,当死亡近在咫尺之时,人类最初的本性便显露无疑,乘客们哭喊、咒骂,歇斯底里的情绪充斥着整个机舱,甚至有人解开安全带,吵闹着要下去……但更多的人是在倾诉对亲人的爱意,那个一个人去拉萨溜达的小姑娘后来勇敢的为人们鼓劲,那个不敢表白聋哑女孩的小伙子在飞机冲进云团最后一瞬喊出真心,那个欺骗老婆自己是大厨师的大汉跟妻子道歉,那个自己都呼吸困难的乘务员紧紧的拥抱小孩,温柔的告诉他:别怕!
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。