1、运用多种感官感知糖果的特征,初步了解糖的作用。2、大胆表述自己的发现,并乐意与同伴交流分享。重难点:运用多种感官感知糖果的特征。准备:1、活动室布置成糖果王国,各种糖果散放于活动区、玩具柜等处,在适合的地方悬挂一些糖果。2、糖果国王头饰一个。二、说教法。幼儿对事物的认识直接受到其原有经验的影响。幼儿对糖果有着丰富的感性经验和浓厚的兴趣,这为幼儿的探究和学习活动提供了良好的前提,也为幼儿在活动中发挥主体性提供了保证。活动组织采用拟人化的手法,符合小班幼儿的认知特点。活动过程以幼儿为主体,让幼儿运用各种感官,主动地、较系统地感知糖果的特征。在整个活动中,幼儿始终积极主动,感知能力、操作能力和思维能力均得到了锻炼。
二、说教材教材内容分析:新《纲要》明确指出:“科学教育应密切联系幼儿的生活实际进行,利用身边的事物与现象作为科学探索的对象”。香蕉是幼儿生活中常见的事物,它富有营养,又贴近幼儿的生活,容易引起幼儿的学习兴趣,且融入游戏,又有幼儿亲身体验,让幼儿在活动中运用各种感官感知香蕉的独特外型、表皮的颜色及与众不同的口味,这符合幼儿的年龄特点和学习特点。正如《纲要》中所述:“既符合幼儿的现实需要,又有利于其长远的发展;既贴近幼儿的生活,又有助于拓展幼儿的经验和视野。”三、说活动目标活动目标是教学活动的核心,活动围绕目标展开。我根据幼儿的年龄特点和实际情况设计了知识、能力、情感三方面的目标:1、通过各种感官认知香蕉的特征,初步了解香蕉的吃法 2、学会自己动手剥香蕉 3、体验到剥香蕉的乐趣,积极参加游戏活动
二、说目标定位:活动的目标是教育活动的起点和归宿,对活动起着导向的作用。小班的孩子年龄较小,他们需要在操作探索、亲身体验中去发现事物的变化。根据小班幼儿的年龄特点和本班实际情况,确立了认知、能力、情感方面的目标,其中既有独立表达的成分,又有相互融合的一面。目标为:1、通过目测区分物体间明显的大小差异,尝试使用一些工具,用不同的方法使各种食物的变小。2、愿意用语言表达自己的发现。3、体验喂娃娃的快乐。根据目标,我把活动的重点定位于使各种食物变小。通过操作实验,使活动得到深化。活动的难点是用不同的方法将食物变小。主要通过探索操作获得经验,通过集体的评价使经验得到整理。总之,我确立了目标的整合观、科学观,使活动呈现呈现趣味性、综合性、活动性,寓教育于生活情景、游戏之中。为此,我做了如下活动准备:1、空间准备:操作台五张呈U字形摆布在后面和侧面,便于操作、评价。2、物质准备:瓶娃娃;各种蔬菜、水果、小吃;小刀、尺、剪刀汤匙;让幼儿根据自己的需要选择操作工具、材料进行大变小的实验。3、经验准备:幼儿对喂娃娃有一定的经验。(娃娃家、区角活动时玩过喂娃娃的游戏)
在中国,大家都知道两个大名鼎鼎的科学家,他们分别是杨振宁和邓稼先。两个人从小就是好朋友。杨振宁后来留学美国,加入了美国国籍。1964年,我国第一颗原子弹爆炸成功,杨振宁为此感到异常激动。1971年,杨振宁从美国回到祖国,与阔别了整整20多年的好朋友邓稼先见面,杨振宁很想知道邓稼先是否参与了中国第一颗原子弹的研究,于是间接地问:“听说中国研究原子弹的专家中有一个美国人,是吗?”邓稼先感到很为难,于是想出了一个既没有泄露国家机密又没有欺骗朋友的办法,对杨振宁说:“我以后再告诉你吧!”。邓稼先就是这样一个诚实的人,无论是对国家,还是对朋友,都是如此。我们懂得了为什么要提倡诚实守信的道理之后,我们还要知道怎样做到诚实守信。要做到诚实守信,需要我们从现在做起,从自己做起,从日常的生活小事做起,人人讲信用,时时讲信用,共同构造一个信用的社会。
二、活动目标根据以上的分析和思考及大班幼儿的年龄特点,我从认知、情感、能力三方面来制定这次活动的目标。1、在观察、探索中了解彩虹现象的由来。2、尝试用多种方法制造“彩虹”,产生对自然界奇妙现象的兴趣。3、愿意与同伴交流,分享探索的过程。4、根据目标:我的活动重点是在观察、探索中了解彩虹现象的由来。活动难点是尝试用多种方法制造“彩虹”,产生对自然界奇妙现象的兴趣。三、活动准备为了使活动呈现出趣味性、综合性,寓教育于生活情境中、游戏中,我做了以下的准备:1、选择一个明媚的日子。2、课件一份,镜子人手一份,盆中装满水,圆珠笔,色拉油,白纸,三棱镜,放大镜,泡泡。四、活动过程根据幼儿的年龄特点,我设计了以下五个环节:引起幼儿的兴趣——迁移经验,了解彩虹的由来——学习动手制造“彩虹”——交流实验结果——延伸活动。我是让孩子们在操作探索中亲身体验,了解彩虹现象的由来,克服重点和难点。具体过程如下:(一)引起幼儿的兴趣。我通过以下三个小环节来实施:1、幼儿自由玩镜子。幼儿在玩中和同伴说说从水中的镜子中找到了什么?2、引导幼儿在水中把镜子对着太阳照射。3、说说自己的发现。数一数有几种颜色?它们是怎么排列的?我开始的直接提问是让孩子们拿着镜子在水中自由玩耍,讨论自己的发现,幼儿讨论的问题肯定不充分,之后我用语言提示他们“在水中把镜子对着太阳照一照”,这样有目的的引导,让他们自己去发现“彩虹”这一奇妙的自然现象:镜子中能反射出七彩的颜色。(二)了解彩虹的由来。这一环节我出示雨中、雨后的课件制作,让幼儿观看课件彩虹是怎么产生的,最后得出结论:彩虹是夏天雷雨过后出现的自然现象,是天空中飘着许多的小水滴经过阳光照射后形成的,彩虹是红、橙、黄、绿、青、蓝、紫这样排列的。屏幕上雨后的课件鲜艳的颜色刺激着小朋友的感官,使他们的手、脑、眼、嘴并用,每个孩子都能全身心的融入学习中。(三)学习动手制造“彩虹”。前一环节的介绍,幼儿对“彩虹”的由来产生了浓厚的兴趣,教师可以这样引导“这么漂亮的彩虹一会就没有了,怎么办呢?”我直接把问题抛给幼儿,让他们想办法解决,孩子们肯定会说:“我们可以自己做一条‘彩虹’呀?那怎么制造‘彩虹’呢?”带着这个问题,让孩子们自己寻找材料,如:泡泡、放大镜、三棱镜、圆珠笔、白纸……幼儿自由地尝试用多种方法制造“彩虹”,教师用问题设置的方法边观察幼儿操作,边及时地提出问题进行引导,幼儿在尝试操作过程中交流、合作。本环节是运用了尝试法和操作法,也是活动的难点之处。
2、目标定位:根据大班幼儿年龄特点及实际情况以及布鲁纳的《教育目标分类学》为依据,确立了认知、能力、情感等方面的目标,融合了语言、科学、社会、艺术领域的整合。目标为:(1)通过各种方法引导幼儿发现自己的成长与变化。(2)激发幼儿欣赏自己的成长,展示自己的能力,树立自信心。(3)乐于与同伴交流、分享自己成长的快乐。(4)让幼儿尝试制作个人成长册,发展幼儿的精细动作。(5)让幼儿体会父母的辛苦、关心,增进亲子之情。根据目标,我把活动重点定位于:感受“我长大了”,主要是发现自己成长与变化。通过观察、比较小时候的照片和用品、播放录像、交流分享、展示自己,使活动得到深化。活动的难点是:根据人的成长过程进行排序、制作个人成长册,主要是通过自主操作,在动手的过程中培养手部肌肉的灵活性和提高排序的能力,对自己的成长充满了期待。在目标定位上,树立了目标的整合观、科学观、系统观,各领域内容有机联系,相互渗透,注重综合性、趣味性、活动性,寓教育于生活、游戏中。因此,我作了以下活动准备:(1)空间准备:幼儿小时候的照片、衣物、用品布置于墙上,桌椅呈同字型便于评价和集中。(2)物质准备:“人的成长过程”图片,卡片纸、彩笔、彩纸、剪刀、胶水等美工材料与工具若干,已制作本领树的树干,小时候的录像(或小中班在园的录像),胎儿的生长发育以及新生儿的养育的录像。(3)知识准备:幼儿向家长了解爸爸妈妈的故事及自己小时候的趣事,观察各个阶段自己成长的照片,熟悉人物主要特征。
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
3.想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。第三环节学有所用.补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。(第1题) (第2题)2.如右图,求出A,B,C,D,E,F的坐标。第四环节感悟与收获1.认识并能画出平面直角坐标系。2.在给定的直角坐标系中,由点的位置写出它的坐标。3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x张,2元的贺卡为y张,可列方程组为x+y=8,x+2y=10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
解析:图中∠AOB、∠COD均与∠BOC互余,根据角的和、差关系,可求得∠AOB与∠COD的度数.通过计算发现∠AOB=∠COD,于是可以归纳∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可发现:∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法总结:检验数学结论具体经历的过程是:观察、度量、实验→猜想归纳→结论→推理→正确结论.三、板书设计为什么,要证明)推理的意义:数学结论必须经过严格的论证检验数学结论的常用方法实验验证举出反例推理证明经历观察、验证、归纳等过程,使学生对由这些方法得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识,了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
第三环节:课堂小结活动内容:1. 通过前面几个题,你对列方程组解决实际问题的方法和步骤掌握的怎样?2. 这里面应该注意的是什么?关键是什么?3. 通过今天的学习,你能不能解决求两个量的问题?(可以用二元一次方程组解决的。4. 列二元一次方程组解决实际问题的主要步骤是什么?说明:通过以上四个问题,学生基本上掌握了列二元一次方程组解决实际问题的方法和步骤,可启发学生说出自己的心得体会及疑问.活动意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.说明:还可以建议有条件的学生去读一读《孙子算经》,可以在网上查,找出自己喜欢的问题,互相出题;同位的同学还可互相编题考察对方;还可以设置"我为老师出难题"活动,每人编一道题,给老师,老师再提出:"谁来帮我解难题",以此激发学生的学习兴趣和信心。
解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。