提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

在2023年信访安全保障工作推进会暨市信访工作联席会议上的讲话

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中数学选修3离散型随机变量的方差教学设计

    人教版高中数学选修3离散型随机变量的方差教学设计

    3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.

  • 人教版高中数学选修3离散型随机变量的均值教学设计

    人教版高中数学选修3离散型随机变量的均值教学设计

    对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

  • 人教版高中数学选择性必修二函数的单调性(1)  教学设计

    人教版高中数学选择性必修二函数的单调性(1) 教学设计

    1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示

  • 人教版高中数学选修3二项式系数的性质教学设计

    人教版高中数学选修3二项式系数的性质教学设计

    1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 公司主题教育总结:主题教育开展情况的汇报材料(阶段性总结)

    公司主题教育总结:主题教育开展情况的汇报材料(阶段性总结)

    一、主要工作开展情况公司D委聚力在组织谋划、宣传发动、理论学习上先学先行,在摸清问题、调查研究、检视整改上先破后立,以五个“先一步”推动ZT教育“第一步”走得实、走得稳,实现良好开局。一是坚持先谋一步,确保组织领导到位。按照xx集团D委学习贯彻新时代中国特色社会主义思想ZT教育工作会议精神和ZT教育实施方案等相关要求,公司D委提前谋划、精心组织,牢牢把准集团D委部署要求,第一时间研究制订《中共xx有限公司委员会学习贯彻新时代中国特色社会主义思想ZT教育工作方案》,明确重点抓好理论学习、调查研究、推动发展、检视整改、建章立制等5项重点任务。方案注重整合D建、安全、经营、发展等核心部门力量,突出“五个一”特点,体现抓好学习这一主线,用好调研这一抓手,聚焦发展这一中心,突出问题这一导向,深化制度这一目标。

  • 开展“扫黄打非·新风”集中行动的阶段性情况总结(街道)

    开展“扫黄打非·新风”集中行动的阶段性情况总结(街道)

    二、工作中存在的问题经过不断的努力,街道出版物市场的经营秩序已步入正规,各种侵权盗版和违法违规的经营行为已趋于零,娱乐业步入正规稳步发展,但是仍然存在不足之处。消费者没有形成健康的消费观念,造成违规现象屡禁不止。由于盗版音像制品、印刷品相对正版制品价格低廉,质量相差不远,所以人们大多愿意购买盗版制品,有求就有供,造成违法违规产品一直冲击着市场。三、下一步工作*街道“扫黄打非”工作领导小组根据市里下发的通知,还对下一步“扫黄打非”工作进行了安排部署:一是持续坚持“扫黄打非”工作好的经验及做法;二是不松懈、不麻痹、不厌战,久久为功,完成“扫黄打非·新风”集中行动各项工作任务;三是进一步深化、创新“扫黄打非·新风”集中行动工作方式;努力实现全社会全领域全天候保护未成年人氛围更加浓厚、网络空间持续清朗,努力为*街道建设营造更好的环境。

  • 精选个人工作计划大全

    精选个人工作计划大全

    1.深化转变护理观念,在14年基础上,更加深入开展整体责任制护理。提高服务质量,续加强医德医风建设,增强工作责任心。作为责任组长,加强责任护理分工,组织协调本组工作,切实落实扁平化护理,能级对应,责任到人,带领本组组员对病区患者实施全程无间隙系统护理。加强落实“优质护理服务”,全面加强临床护理工作,强化基础护理,改善护理服务。

  • 学校后勤个人工作计划(推荐4篇)

    学校后勤个人工作计划(推荐4篇)

    1、组织我校后勤职工统一思想认识,强化职业道德教育,增强责任感,进一步提高后勤工作人员的业务素质和思想素质,以胜任形势的发展和工作的需要。2、坚持管理育人、服务育人的方向,倡导“勤思、务实、高效、优质”的工作作风,让全体后勤人员认识学校后勤工作的重要性。解放思想,实事求是,逐步养成良好的工作习惯,以高度的责任感、紧迫感和主人翁意识投入到工作中来。3、联系校本实际,完善各项制度,制定实施细则。

  • 关于基层农技推广体系改革与建设工作总结

    关于基层农技推广体系改革与建设工作总结

    (二)农技从业人员专业技能不足,推广力量有待加强。在基层农技推广队伍当中,部分农技员没有接受系统的推广教育,其推广含金量不足。部分农技人员没有外出学习和培训机会,知识结构老化。技推广人员老龄化问题较为突出,特别是基层一线技术人员退休后,新生力量得不到及时补充,出现断层现象。(三)工作经费不足。基层农技推广站的农技推广经费、培训费、资料费,下乡费等存在很大缺口,特别是村级农民技术员待遇低,开展农技推广工作难。五、新时期农技推广工作思路与重点举措(一)充分发挥专家组的积极作用。为强化农业特色产业科技支撑,加快推进农村科普工作开展,县分别成立茶叶、中草药、猕猴桃、生态养殖、蔬菜五个专家组,指导选择适宜品种,加强关键技术攻关,加快实用技术推广应用,指导建立试验示范基地,推动品种技术升级换代,帮助解决产业发展技术难题。

  • 年终工作计划

    年终工作计划

    a,贯彻公司质量方针,不断完善公司质量保证体系文件,确保iso9000、ts16949  质量管理体系以及将来的iso14000和ce、ul等认证能持续运行并有效执行;  b,根据公司质量目标,督导各部门建立相关品质目标,负责对各部门的品质管理工作进行评估,并根据实际业绩和生产情况组织检讨,规划;  c,负责公司各种品质管理制度的制订与实施,组织与推进各种品质改善活动,如“qcc品管圈活动”、“5s活动”等;  d,建立质量管理责任制,落实到各相关部门(人),建立并完善品质考核制度办法,执行“每一道工序严格把关,做到人人有职责,事事有依据,作业有标准,层层有监督”;

  • 镇2022年工作总结

    镇2022年工作总结

    (二)聚焦规划先行,新型城镇化不断提速。顶格推进征迁安置工作。举全镇之力,整合各类资源,调动积极因素,出台激励机制,完善多方保障,扎实开展房屋及土地征收。加快推进淮宿蚌城际铁路征地工作,目前协议已经全部签订。持续推进增减挂项目安置工作,大营镇2022年实施的增减挂村庄共涉及镇东、镇西、韩圩*个行政村*个自然庄,拆迁村庄面积*亩,搬迁人口*户,*人,目前镇东村半截刘半截王已拆除复垦完毕,韩圩村东韩、顿庄、镇西村陶王庄群众正在搬家。扎实做好乡村振兴文章。以健全防止返贫动态监测和帮扶机制为抓手,以“四个聚焦”为主要内容,切实抓好监测对象动态管理和精准帮扶,确保已脱贫户不返贫,一般农户不致贫,深入巩固拓展脱贫攻坚成果。严格按照《关于健立健全区乡村组“四级网格”动态监测帮扶机制的通知》的要求,全镇共划分*个网格,建立镇不漏村、村不漏组、组不漏户的全方位网格化动态监测体系,不定期组织网格员对所有农户开展一次“两不愁三保障”及饮水安全突出问题全面排查,摸清有致贫返贫风险的农户,找准存在的“两不愁三保障”及饮水安全突出问题。常态化开展网格化排查工作。截止目前共排查*个问题,已整改*个问题,正在整改*个问题。开展网格员培训会,提升网格员业务水平和履职能力、政策水平,更好的宣传衔接政策,排查和反映农户存在的问题,配合落实各项帮扶政策。优化调整“一户一方案、一人一措施”。结合脱贫户及监测对象实际,进一步优化调整脱贫户及监测对象“一户一方案、一人一措施”,制定并落实产业项目、就业扶贫、危房改造、生态保护、智力扶贫、健康脱贫、社保兜底、金融扶贫等方面的帮扶措施,使全镇*户脱贫户及监测对象均能享受相应的帮扶措施。实施衔接推进乡村振兴补助资金项目*个,补助资金*万元,已全部全部拨付。大力推进产业扶贫。为充分发挥产业带贫作用,大营镇积极组织申报产业到户项目,2022年申请产业到户项目*户,涉及奖补资金*万元;经镇村验收通过*户,涉及奖补资金*万元。

  • 2022年镇工作总结

    2022年镇工作总结

    一、强化综合施策,经济发展稳中有进 全力助推企业复工复产、稳工稳产,及时1对1帮助企业破解复工难题,有效稳定镇域商贸发展。开展“高耗低效”整治,有效促进绿色经济,整治企业11家,淘汰落后产能11家,高配完善“一园四区”发展平台,积极推进*(*)农业经济开发区建设,禾下土现代农业产业园厂房已全部结顶,园区基础设施配套设施火热动建中;智能机械与轻纺小微园区配套工程全部完工,已申报省级小微园区;马仁建材工业功能区提升改造工程全面竣工,园区内乾辉机械、春纺机械等4家企业已正式投产。 二、聚力乡村振兴,现代农业提质增效 建成全省首个粮食数字化平台--百亿崇粮,平台实现了全市1021个种粮大户的上图入库,储备了全国2019家*小吃营销网点信息,启动稻米文化展馆建设和*年糕饺规范化营销工作,打通育种、生产、加工、销售各环节,形成“百亿”粮食全产业链条,保障农民“种好粮”、大户“卖好粮”、消费者“吃好粮”。“粮多多”小程序已在浙里办顺利上架,通过“一机响应”智能调度农机资源。匠心打造石林花海、钳口生态园、淡山油菜花海等精品农旅项目,借助“乡村振兴先行村”“未来乡村试点村”等建设契机,统筹五色资源,助力温泉湖村成为极具辨识度的农旅融合标志性IP。 三、着重塑形铸魂,城乡面貌加速蝶变 加速铺展魅力*宜居画卷,开展爱国卫生运动,每月定期开展四害消杀;全力打通美丽经济转换通道,加快实施城乡风貌一体化景观提升改造工程,抢抓农村道路提升改造,加快创建美丽城镇省级样板镇,改建老卫生院为集邻里中心与文化活动中心等综合功能于一体的“小镇客厅”,着力补齐访客接待短板。国土空间总体规划形成初步成果,完成*镇“十四五”土地整治规划,完成*镇土地开发和旱改水项目有关政策实施方案起草工作。推进高标准基本农田建设,4个高标准标段工程均已完工验收。全力开展“千亩方”永久基本农田集中连片整治,项目总腾退面积为1685亩;稳步推进开展粮功区“非粮化”清理腾退第二批集中攻坚行动,。不断加大水利工程建设力度,百步岭水库等14个水库、6个山塘综合整治提升工程梯次动建、陆续完工中,逐步建成形成布局合理、功能完备、运行高效、管理科学的农田水利工程体系。 四、呼应百姓关切,民生福祉日益增进 始终筑牢一站式服务群众主阵地,32个行政村全部开通政务2.0系统,落实代办和兜底办,累计办理15730件事项,覆盖率、办结率、好评率均达到100%。扎实推进全民疫苗接种工作,稳步推进3-17岁人群疫苗接种和加强针疫苗工作。守护千年古镇历史文脉,逐步维修樵溪台门、静轩台门等7处国保台门,完成四五村历史文化村落建设。启动“擦亮文化明珠”行动,打造*文化金名片,通过业态引流,推进建设一批与*古镇气质吻合的系列微型主题馆,目前,名人、书法、古玩、攀登等6家微型主题博物馆建设逐一进驻落成,傅全香名人故居盛大开馆,为古镇注入灵魂,构建成一个文人文化聚集地。

  • 安全生产月活动总结银行幼儿园工作汇报报告

    安全生产月活动总结银行幼儿园工作汇报报告

    2.广泛宣传、扩大影响。在活动中,我们在班级群发送安全提醒,发放“防溺水安全”、“交通安全”致家长一封信,为我们的教职工和家长提供了各种安全知识。3.将安全工作融入到班级的主题活动中。结合此次安全月活动,班主任在本周开展了安全教育活动,以达到教育幼儿的目的,包括有防溺水安全、交通安全等防意外伤害。四、加强宣传,强化监督,提高教职工和幼儿的安全意识1.班主任每日利用放学前对幼儿进行各种安全小常识的教育。2.通过让幼儿学习安全儿歌,进一步知道一些安全知识,组织幼儿观看有关安全的视频。3.园内开展消防逃生安全演练活动,让老师和孩子进行实际的操作和演练,加强孩子的自我防范意识。多年来,我园时刻牢记《纲要》要求,把保护幼儿的生命,促进幼儿的身心健康,当作持之以恒的工作来抓,我们每个教育工作者都必须时刻牢记。唯有如此,才能让每个孩子茁壮成长,让每个家庭快乐欢笑,让整个社会充满和谐。

  • 生态环境安全隐患排查工作总结范文汇编11篇

    生态环境安全隐患排查工作总结范文汇编11篇

    二、校园文化本学期,我校在县教体局的正确领导和亲切关怀下,教学大楼已经交付使用,操场已经全部硬化,并以开始铺设塑胶,校园四周也已按照构想进行了布置。富有青云小学文化特色的现代化校园已基本形成。1、加强校园文化建设的组织领导。校园文化建设是提升教育质量、打造办学特色、实现办学理念不可或缺的前提,只有拥有文化的支撑、方能体现学校的内涵,因此我校高度重视校园文化建设,坚持传承和弘扬我校悠久灿烂的历史文化,以校园现代化设施为依托,努力打造实施素质教育与传统文化教育为主要亮点的学校名片。为了做好校园文化建设工作,我校成立了以校长为核心,中层领导和班主任教师参与的校园文化建设工作领导小组,制定了校园文化建设实施方案,并认真组织实施。2、开展各种活动,焕发校园生机。①坚持了每周一升国旗和国旗下的讲话制度,这一活动已成为我校的一道亮丽风景。

上一页123...346347348349350351352353354355356357下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。