五、说课件设计及板书随着教育现代化的发展,多媒体课件在课堂中辅助教师授课,帮助学生练习,已成为非常重要的教学辅助工具之一。在本节课的授课过程中,本人也使用了多媒体教学课件。课件在设计上遵循实用性原则、辅助性原则、创新性原则,紧紧围绕教学目标,服务于课堂教学,设计科学合理,制作精美细致;课件的有效使用很好地优化了课堂,极大地扩充了容量,有力地突出了重点,轻松地化解了难点;使学生学习兴趣浓郁,使教学效率大大提高;特别是在演示多边形对应角相等的设计,使这一教学环节变得更直观、更高效、更方便,让学生轻松地进行探究,很好地保护了学生的学习热情,方便了教师的策略实现。在授课过程中,我又不是完全依赖于多媒体课件,而成了课件反映员;我充分发挥教师的主导作用,合理地利用黑板板书有关内容,灵活动配合多媒体课件为学生呈现有关知识点,以弥补课件的不足。
接下来请同学们改造这五个句子,变成“如果??,那么??”句式,其实就是一个语文环节中的造句,同学们很活跃,纷纷举手发言。课堂检测练习我用到的是课本221页习题6.2第1、2题,有个别同学会做错,做错点在于对判断还把握不够到位,还有少数同学对定义与命题的理解产生混乱。据此,我提出:定义与命题两个概念该如何区别?同学们举手发言:定义是一个描述性的概念,而命题是判断一件事情的句子。还有同学说道:定义就是一个“??叫??”的句式,命题就是“如果??那么??”的句式。在教学中,学生对定义与命题的把握还是比较清楚的。大部分学生可以口头完成导学案设计的题目。能够迅速的把一个命题转化成“如果?那么?”的形式.利用疑问句和祈使句的特点,判定不是命题的语句.迅速的掌握情况还是比较可以的。
学生以小组为单位,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.3.突破重点、突破难点的策略在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用能力,提高学生解决实际问题的能力.
三、达标测试这一环节,我共设计了5道题,题型有选择、填空、解答。这些题都来自于课后习题,是课后习题的重组和整合,能够很好地考查学生对本节课的掌握情况。这一环节设计以多变的题型呈现,总体还是以基础题为主,以课后习题为主要内容设计,可把课后习题改编成填空、选择、计算、解答、证明等。这些题的设计要有典性、代表性,要紧跟时代步伐。80%-90%的学生能做全对,题量不能超过6道题。学生答题时间不能超过8分钟。四、拓展延伸这一环节以综合运用推论的一道计算题呈现的。旨在让学生在课后巩固对推论的理解,另一方面也为后面学习相似三角形做铺垫。以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
3.故事还没完了,没早睡,明明还会怎么样?(引导往安全方面想)上体育课时……我们应该……(早睡早起,每天睡足十小时)在回家的路上……我们应该……(早睡早起,每天睡足十小时)是的麻烦会不断上门。我们应该……(早睡早起,每天睡足十小时)小时:看来充足睡眠能保安全哦!(板书:保安全)如果长期睡眠不足后果更严重。4.演一演师:同学们,明明现在很后悔了,他说一定会早睡早起。真的这样,明明的一天又会变得怎样?让我们时间倒流吧!同学互相讨论,尝试演一演。指名与老师一起演一演。小结:有早睡,多美妙!现实生活可没有时光机。为了健康与安全,我们还要坚持早睡早起,每天睡足十小时。【设计意图:观察书本上的插图,想象人物间的对话故事,换位思考,反思自己没早睡会带来哪些不良的后果。续说故事,明白充足睡眠也是保障生活安全的重要因素。演一演,创设正面教育情境,把“早睡早起”的种子深深种在心里,生根,发芽。】
一、说教材:《别伤着自己》是《家中的安全与健康》单元里的第3 课。本课侧重 让学生了解家庭生活中常见的安全问题,形成基本的安全意识,是单 元目标的重要内容。 同时,侧重引导学生主动学习防范意外伤害的方 法,发展自我保护的意识和能力。在日常生活中,危险无处不在,儿 童意外伤害事故屡见不鲜, 皆因儿童缺乏安全防范意识和自我保护能 力。所以,让学生初步了解日常家居生活中常见的安全问题,提高自 我保护意识,是学生形成自我保护能力的重要内容之一。《课程标准》 对于新入学学生的自我保护意识和能力培养有明确要求《课程标准》 的课程目标中提出了需引导和帮助学生学会掌握自身 生活必需的基本知识和基本技能”。课程内容中也明确了相应的学习 指导内容:“健康、安全地生活”的第8 条“使用玩具、设备进行活 动时,遵守规则,注意安全”,第9 条“认识常见的交通标志和安全 标志,遵守交通规则。
教学过程:一、导入1、听《年轻的朋友来相会》,导入新课。今天,我们要学一首校园歌曲《校园的早晨》。二、歌曲简析、乐理、节奏1、三段式A8 + B12 + A142、反复跳跃记号3、弱位起音、切分音4、︱0ⅹ ⅹⅹ ⅹ ⅹⅹ∣ ︴ 0 ⅹ ⅹ ⅹ ⅹ ∣ 三、学唱歌曲1、我们一起来欣赏一下《校园的早晨》,听一听并思考:这首歌曲描述的是哪里的场景,表达怎样的情绪?2、有感情地朗读歌词。师:哪位学生用刚才这位同学所说的情感来读第一段歌词。 3、重点学唱第一段简单的练声出示歌谱示范歌唱第一段,边弹边唱。逐句教唱,讲授重点、难点乐句,并加强练习。师:因为我们这首歌是以校园生活为素材的,所以出现很多强位上的休止,使音乐显得活泼可爱。学生齐唱第一段,老师伴奏。 打节奏要清晰,打的声音不要太大。4、学唱第二段(1)分句指导歌唱(同上)。(2)重点练唱:有强位休止符的乐句;有切分音的乐句。(3)学生齐唱第二段,老师伴奏。5、学唱第三段(1)重点学唱最后一句,齐唱第三段。
精读课文,理解积累 1、同学们的字记的很好,课文也一定能读出感情来。现在就请同学们带着自己的理解和感受,有感情地读一遍课文,并自己喜欢的一段精读。 2、讨论交流,指导朗读 调整方案: 方案一:通过读文你知道了什么?(这一问题较开放,如果学生已从整体上感知课文内容,即可进入下一环节。如果学生回答只停留在零散的词句上,就按方案二教学。) 方案二:小燕子、麻雀和黄莺它们分别认为春雨是什么色的?他们为什么这么认为?(板贴写有字的小写图片和对应的颜色) 3、小组内讨论:a.如果分角色朗读的话,该怎样读争论的语法,朗读好“不对”“不对,不对”“你们瞧”b.怎样表现春雨小鸟和大自然。 4、根据自己的理解感受小组内分角色读、表演读。 5、请一组同学配乐表演读,学生评价 6、同学们春雨到底是什么颜色的呢?把你的想法说一说,画一画(自选粉笔板画春雨) 7、指导积累。同学们读得真有感情,现在请把你喜欢的词句画下来。
4月19日,湖北红安00后为争女朋友斗殴,操板砖砸人手段凶残。 4月30日,福建南安一初一男生被同校学生及社会青年追打,捅伤。 5月12日,福建晋江学生校外打架一死两伤。 5月19日,辽宁沈阳宁官实验学校篮球暴力事件。 6月16日,山东济南一中学多名学生暴力殴打同校学生。 6月21日,湖南怀化一女生在校园遭8名学姐群殴致耳膜穿孔。 6月26日,河南信阳数百中学生赤膊群殴。(二)抵制校园暴力此环节设置三个问题,这三个问题分别是:1、同学间发生矛盾时,作为当事人,我们应该如何解决?2、矛盾一时难以解开,如何有效扼制校园暴力的发生?3、一旦发生校园暴力事件,如何应对?这三个问题,分别是从学生间出现矛盾时、校园暴力发生前、校园暴力发生中三个不同阶段提出的,能够让学生思考在不同情况下如何处理矛盾,并尽可能的避免校园暴力的发生,一旦发生校园暴力,也能够及时采取措施避免伤害。最后师生共同总结出避免校园暴力的做法: 从受害者的角度想:不理睬;找老师;懂自救。 从施暴者的角度想:想后果;勿冲动;换位思考。
一、图片导入,激发兴趣。1.导语:大家还记得在科幻世界里那些随意消失变化的人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识?2.展示图片:【课件出示2】图1.纳米机器人(描述的是一个纳米机器人在清理血管中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,它们可以非常容易地予以清理,而不再用进行危险的开颅、开胸手术。)图2.纳米技术制作的中国地图(这是中国科学院化学所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)
2学情分析一年级的学生,虽然经过了一学期学习但好习惯还没养成,课上易失去注意力等。因此我在教学中要关注学生的注意力,抓住学生的兴趣点加以引导、启发,说易懂的语言,练学生易学的方法,让学生在宽松融洽的气氛快乐的学习。a教学重点教学重点:以最简单的方式让学生了解图案的基本构成特点。学时难点把握个人创作与集体合作的关系。
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
《我家是动物园》这个故事,让孩子们充满了惊喜和快乐,它能让孩子产生幽默与共鸣,并展开合理的联想。 “家”怎么会是动物园呢?这让孩子产生了好奇。而读完作品后,从作品中,他们感受到了人与人,人与动物之间的关系,并认识到各种不同生命和谐相处是一个美好并值得努力的理想。 二.结合生活,合理联想 孩子有自己的朋友,他们会为一件小事而吵架,会为朋友的一句话而委屈,会一起玩得很高兴,会和朋友说悄悄话……。 迁移作品经验,让孩子把朋友和动物形象展开联想,创设情境,把班级比作动物园,把熟悉的小朋友比作可爱的小动物,这对他们来说是一种需要的满足。 本次活动,需要引导孩子从朋友的外表,习惯,喜好等方面对朋友有一个综合形象的联想。与此同时,挖掘不同状态下朋友的不同特点,如:吵架的时候,一起玩的时候,哭的时候,笑的时候,分别象什么。这些经验都应该是孩子在这一年来,与朋友的相处中累积的感性经验和理性思考。 能体会朋友间的“幽默”形象的比喻,亮出自己观点,去欣赏、接纳别人的优点,理解、宽容别人的缺点,同时去帮助、支持他人有合作的意识。 三.班级的背景特点及价值追求 孩子们很快就要离开幼儿园,进入小学阶段的学习。孩子们非常珍视友谊:赠送礼物、保存着朋友的小名片……能让孩子在毕业的时候,感受到我们这个动物班级的欢乐,感受到每个小动物的可爱,从小在他们内心播洒友谊的种子,珍藏最初的友谊。将来无论走到哪里,在心中总会有“小动物”朋友陪伴着他。