解:有理数:3.14,-53,0.58··,-0.125,0.35,227;无理数:-5π,5.3131131113…(相邻两个3之间1的个数逐次加1).方法总结:有理数与无理数的主要区别.(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.探究点二:借助计算器用“夹逼法”求无理数的近似值正数x满足x2=17,则x精确到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正数x各位上的数字的方法:(1)估计x的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x的百分位、千分位、…上的数,从而确定x的值.
例1 解不等式x> x-2,并将其解集表示在数轴上.例2 解不等式组 .例3 小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分?例4 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?
教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.第六环节 课后练习四、教学反思数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.在解决实际生活问题的实例选择上,我们尽量选择学生熟悉的实例,如:学生身边的事,购物,农业,工业等方面,让学生真切地理解数学来源于生活这一事实。有些学生对应用题有一种心有余悸的感觉,其关键是面对应用题不知怎样分析、怎样找到等量关系。在教学中,如果采用列表的方法可帮助学生审题、找到等量关系,从而学会分析问题。可能学生最初并不适应这种做法,可采用分步走的方法,首先,让学生从一些简单、类似的问题中模仿老师的分析方法,然后在练习中让学生悟出解决问题的窍门,学会举一反三,最后达到能独立解决问题的目的。
解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
活动准备 1.和同龄班的教师交流活动的目的和内容。 2.邀请一部分同龄班幼儿参与活动。活动过程 一、教师引入话题。 1、教师:你有朋友吗,你是怎么认识他(她)的? 2、教师:在幼儿园里我们只认识自己班的小朋友,今天我们去和大×班的小朋友交朋友,你们会用什么方法去交朋友? 3、教师和幼儿相互交流。
让孩子自然而然接受刷牙大部分的小孩刚开始都会排斥把牙刷放入口内(尤其是不满一岁的小婴儿),较敏感的孩子还可能有呕吐感。父母开始教导孩子刷牙时,可以先选一支大小适中、软毛的儿童牙刷,市面上的牙刷颜色非常鲜艳,有些还有卡通图案,可以吸引孩子的注意力,也有分龄(0~2岁,3~5岁,6~9岁),因为刚长出乳牙的小婴儿正处于口腔期,先让小孩当作玩具放入口内,让孩子不会排斥牙刷在口腔中感觉,也不必太严肃要宝宝马上学会自己刷牙。
活动准备 1、每位幼儿准备一份小包装的食品。 2、相同包装的食品,一份有防伪的标记,一份没有。 3、请一位小朋友排练情景表演:一包膨化食品。 活动过程 1、幼儿观看小朋友表演:一包膨化食品。 ——幼儿观看教师表演。教师在前面表演,内容大致如下:小朋友手里拿着一包膨化食品,说:“今天,我在商店里买了一包膨化食品。”然后,打开食品袋吃这包食品,接着,假装肚子痛。 2、引导幼儿讨论:这位小朋友怎么了?是什么原因造成肚子痛和不舒服的?让幼儿根据自己的经验发表自己的观点。 3、配班老师身穿白大褂,扮成医生对小朋友进行检查,说:“小朋友,你是食物中毒了。”医生拿过小朋友手中的食品,观察上面的文字说:“这袋食品已经过了保质期,你吃了过期的食品,就会生病不舒服。”
一、目标1、知道新鲜空气对人们的重要性,了解抽烟对人体健康,社会环境的危害。2、增强幼儿关心、保护环境的意识,激发幼儿争做环保小卫士。二、准备:1、经验准备:幼儿了解吸烟对人体健康的危害。2、材料准备:教师:棉花、香烟、瓶子;幼儿:大型积木,剪刀,纸,食品包装,记号笔,禁烟标志等。三、过程:
活动准备: 1、教学挂图:小朋友运动----不想吃饭。小朋友吃饭----小朋友追逐跑----手捂着肚子。 2、纸和笔。 活动过程: 一、出示图片,引导幼儿观察画面,了解吃饭前后剧烈运动带来的危害。 1、教师:图上有谁?小朋友在干什么?为什么他们不想吃饭? 2、教师:图上的小朋友吃饭后,在场地上干什么?为什么他捂着肚子? 二、教师进行简单小结。 1、剧烈运动需要大量的体力,在吃饭前后进行剧烈运动,人会出很多的汗,容易使人疲劳,感觉不舒服,所以人就不想吃饭。 2、在吃饭后剧烈运动,容易使肠胃中的饭粒掉到阑尾中,出现肚子疼、阑尾炎等症状。
[活动目标]1、让幼儿认识水的有关性质及水的用途。2、萌发幼儿节约用水、保护水资源的意识。3、发展幼儿的观察和语言表达能力,为汶河位于家乡而自豪。 [活动准备]1、请家长配合生活中注意节约用水并有意识引导幼儿节约用水。2、实验用的小瓶、杯子、颜料、可乐、醋、透明的塑料细软管。3、(1)被污染水的挂图。 (2)正在滴水的自来水管。 (3)河里的鱼、虾、面临死亡的挂图。 (4)课前家长同幼儿参观汶河。
活动目标: 1、通过实践活动,充分调动幼儿参与的积极性和探究交流的主动性。 2、使幼儿在尝试交流、选择购物中懂得做出决定需要考虑诸多方面问题,并在购物过程中体验交流、选择、合作、分享的快乐。活动准备: 1、活动前一天组织讨论,选择购物区域。 2、具体准备由幼儿与老师一起讨论决定。活动进程:(一)活动前的讨论 1.选择购物区域: 师:明天,我们要去大统华超市购物,因为地方大,而我们的时间有限,只能选择超市中的一个区域,下面请大家讲一讲,超市里有哪些区域? 幼:洗涤用品区,日常用品区,餐具区,儿童食品区,糕点区,蔬菜区…… 师:选择那个区域呢?请小朋友决定。 (教师贴区域名称,准备好粘贴画“苹果娃”,以便幼儿决定后在其名称下贴一标志。) 师:请小朋友说一下作出准备的理由。
活动准备:乐器、图谱。 活动过程: 一、熟悉音乐 1、连续两遍音乐入场,并做相关动作。 提问:你觉得这首音乐是怎么样的?好像在干什么? 2、听音乐进一步感受乐曲性质。 介绍:乐曲的作者、名称及内容。 二、熟悉图谱 1、听音乐,教师指图谱。 介绍:图谱中的三种图形分别代表三种乐曲,老师是根据乐曲声音的特点来画的,请小朋友仔细听:他们像什么乐器发出的声音?
2、能根据歌词创编找鸡(鸭)、抓鸡(鸭)、杀鸡(鸭)、吃鸡(鸭)等动作。 3、体验生活中热情招待客人的快乐情感。 活动准备: 1、熟悉歌词。 2、教师事先让幼儿观察捉鸡(鸭)、杀鸡(鸭)的过程丰富幼儿的感性经验。 3、鼓励幼儿在爸爸妈妈杀鸡(鸭)时做他们的小帮手。 4、教师带领幼儿一起用挂历纸制作厨师帽。 5、炖鸡汤和红烧鸭的实物,歌曲录音带、录音机。 活动过程: 一、教师扮演厨师,导入活动 1、我是个厨师,今天我给大家做了两道好吃的菜,你们想知道是什么菜吗?让我来唱给你们听。 2、教师范唱一遍歌曲,在歌曲的结尾出出示两道菜(炖鸡汤和红烧鸭) (评:教师在开头以厨师的身份导入,让幼儿进入“厨师做菜”的情景,使幼儿在开头就被深深的吸引住了,有利于活动的更深层的开展。)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。