解析:水是生命之源,节约水资源是我们每个居民都应有的意识.题中给出假如每人浪费一点水,当人数增多时,将是一个非常惊人的数字,100万人每天浪费的水资源为1000000×0.32=320000(升).所以320000=3.2×105.故选B.方法总结:从实际问题入手让学生体会科学记数法的实际应用.题中没有直接给出数据,应先计算,再表示.探究点二:将用科学记数法表示的数转换为原数已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.三、板书设计借助身边熟悉的事物进一步体会大数,积累数学活动经验,发展数感、空间感,培养学生自主学习的能力.
2008年8月,奥运会将在我国首都北京举行,全国上下都在为奥运会积极准备,小朋友也通过电视、报纸等媒体、以及周围环境等多种途径了解了奥运会,他们对奥运会这个话题很感兴趣,奥运会的吉祥物福娃更是深受小朋友的欢迎。因此我就从孩子的兴趣入手,将数学活动融入孩子的生活,和他们所熟悉的、感兴趣的事物结合起来,设计了《福娃迎奥运》这个活动,把枯燥的数学知识寓于“福娃迎奥运”这个有趣的情景模式中,尽可能地调动孩子的积极性,使他们以愉快的情绪投入活动,获得经验。
数学活动的内容应具有启蒙性、生活性和可探索性。在这个活动中也注意到了这三点。第一、启蒙性。指幼儿对某一内容有所感知和体验,对这一内容获得较丰富的感性经验。在整个活动中,幼儿都处于感知和体验规律的氛围中,对于规律这一内容有了较丰富的认识。第二、生活性。教育生活与幼儿生活实际紧密联系。内容应该是幼儿所熟悉的,也是他们所能理解的。让幼儿感受到数学可以解决人们生活中所遇到的问题。活动选择了搭建动物园——铺一条去动物园的路、为动物园搭围墙这些内容。铺路搭围墙都是幼儿日常生活中了解熟悉的,幼儿能够接受理解。第三、可探索性。即培养幼儿初步的探索、猜想、逻辑推理能力,运用数学方法解决问题的能力。在活动中,幼儿通过观察探索规律,从而运用规律这一数学概念来解决排序的问题(即铺路、为小动物搭围墙)。
《纲要》指出:幼儿的发展是在与周围环境的相互作用中实现的,良好的教育环境对幼儿的身心发展具有积极的促进作用,应充分利用社区资源,拓展幼儿生活和学习的空间,借孩子感兴趣的事物,充分挖掘其潜在的、有利于孩子身心和谐发展的教育价值。超市是幼儿在日常生活中最熟悉的场所之一,超市里各种各样的物品吸引着幼儿。为此,我们选择了幼儿感兴趣的题材--“超市”开展主题活动。幼儿园数学是一门系统性、逻辑性很强的学科,有着自身的特点和规律,新《纲要》提出“数学教育必须要让幼儿能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣;教师要引导幼儿对周围环境中数、量、形、时间和空间等现象产生兴趣,建构初步的数概念,并学习用简单的数学方法解决生活和游戏中某些简单的问题。”由此可见生活化、游戏化已经成为构建数学课程最基本的原则。在对教材和本班幼儿的学习情况有一定了解后,我制定出本次活动目标:1、通过购物,学习5以内的加减运算;2、初步了解加减法算式所表达的实际意义。
拼图活动是幼儿园经常进行的活动,也是孩子们非常感兴趣的一项活动。以往的拼图活动比较注重拼图的造型设计和制作,对拼图活动本身所蕴藏的数学内涵挖掘不够。其实,拼图活动也是帮助幼儿了解整体与部分关系、掌握数概念的一个很好的载体,而且也符合新《纲要》“引导幼儿对周围环境中的数、量、形、时间和空间等现象产生兴趣,建构初步的数概念,并学习用简单的数学方法解决生活和游戏中某些简单的问题”这一精神。中班幼儿的思维仍带有直觉行动性,主要依靠动作进行,需要亲身体验,在操作探索中发现事物的特征。他们对于物体整体与部分关系的理解,必须借助于对具体物象的感知,拼图活动恰好为帮助幼儿感知数量的多少、整体与部分的关系提供了直观形象的支持。在日常的活动中,孩子们已经积累了一定的圆形拼图的造型经验,为本活动的开展奠定了良好的基础。
数学活动的内容具有生活性,这是指数学教育活动内容与幼儿的生活实际紧密相连,这些内容是幼儿所熟悉的,也是他们所能理解的,让他们感受到数学可以解决人们生活中遇到的问题。数字在我们的生活中无处不在,教师可以引导幼儿通过观察、发现周围环境中哪些地方、哪些物体上有数字,这些数字表示什么。例如:房屋上的门牌号码、书上的页码、汽车和汽车站上的数字、日历上的日期等等,它们分别表示着不同的意义。若能通过与幼儿生活实际相联系数学活动,让他们感到学习的内容是熟悉的,不仅能激发他们的兴趣,而且能让他们感受到数学就在他们身边是很有用的,并能激发幼儿更加注意,发现周围与数学有关的事务和现象。大班数学活动《设计门牌号码》就是运用生活中的序数经验,引导幼儿体验生活中数字的作用。
认识单、双数是幼儿园大班幼儿上学期学习的数学内容之一,它来源于幼儿园课程中的科学领域。我发现幼儿在第一课时的学习后,对单、双数的掌握还存在个别差异,仍需要进一步的巩固、练习。我们知道,数学本身具有较强的逻辑性,在教学中容易让孩子感到枯燥、乏味,影响到幼儿学习的自主性和积极性。而《纲要》中明确指出:数学教育的目标是“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣。”在这一精神的指导下,我构思了本节数学活动。将一系列的游戏贯穿于第二课时的整个活动中,让幼儿在玩中学,在学中乐。以幼儿在第一课时的学习情况及布卢姆的《教育目标分类学》为依据,我从认知、能力、情感方面确立了本节课的目标:(1)幼儿通过游戏能较熟练地分辩10以内的单数、双数。(2)培养幼儿思维的灵活性,提高幼儿在数学活动中的分析(3)幼儿在游戏中体验参加数学活动的乐趣。
在经济水平较高、工业地域规模较大的地区,其发展潜力就远不一样,如钢铁工业。钢铁工业的生产过程比较复杂(如课本图5.31),需要有相互接近的工厂,不仅包括从事钢铁生产各道工序的工厂,如烧结厂、焦化厂、炼铁厂、炼钢厂、轧钢厂,还包括与钢铁生产有联系的工厂,如氧气厂、机修厂、发电厂、水泥厂等,总共可达20~30个工厂。这些工厂集 聚,设备大,管线长,占地多。因此,这样形成的工业地域(钢铁工业区)面积广,发育程度高,发展潜力大。这类工业地域 再加上为方便众多工人生活所配置的服务业和其他工业,在发展过程中,往往由于工业地域的扩展而形成工业城市。例如,我国的鞍山(“钢都”)、攀枝花、马鞍山、包头(“草原钢城”)等钢铁工业城市的形成。除此之外,石油化工区、机械制造工业区等属于发育程度高的工业地域,也往往扩展而形成工业城市。例如,我国的石油城大庆、克拉玛依,汽车城十堰等。
一、知识与技能1、知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法2、理解牛顿第一定律的内容及意义;理解力和运动的关系,知道物体的运动不需要力来维持。3、理解惯性的概念,知道质量是惯性大小的量度;会用惯性解释一些现象。二、过程与方法1、观察生活中的惯性现象,了解力和运动的关系2、通过实验加深对牛顿第一定律的理解3、理解理想实验是科学研究的重要方法三、情感态度与价值观1、通过伽利略和亚里士多德对力和运动关系的不同认识,了解人类认识事物本质的曲折性2、感悟科学是人类进步的不竭动力[教学重点]1、理解力和运动的关系2、对牛顿第一定律和惯性的正确理解3、理想实验[教学难点]1、力和运动的关系2、惯性和质量的关系
一、知识与技能1、知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法2、理解牛顿第一定律的内容及意义;理解力和运动的关系,知道物体的运动不需要力来维持。3、理解惯性的概念,知道质量是惯性大小的量度;会用惯性解释一些现象。二、过程与方法1、观察生活中的惯性现象,了解力和运动的关系2、通过实验加深对牛顿第一定律的理解3、理解理想实验是科学研究的重要方法三、情感态度与价值观1、通过伽利略和亚里士多德对力和运动关系的不同认识,了解人类认识事物本质的曲折性2、感悟科学是人类进步的不竭动力[教学重点]1、理解力和运动的关系2、对牛顿第一定律和惯性的正确理解3、理想实验[教学难点]1、力和运动的关系2、惯性和质量的关系[课时安排]1课时[教学过程][引入]
实验目标:1、知道打点计时器的构造和原理,学会使用打点计时器,能根据打出的纸带计算打几个点所用的时间,会计算纸带的平均速度,能根据纸带粗略测量纸带的瞬时速度,认识v-t图象,并能根据v-t图象判断物体的运动情况。2、通过速度测量过程的体验,领悟两个方法:一是用图象处理物理数据的方法;二是极限法或说无限趋近法,加强一个认识,实验是检验理论的标准。实验器材:电源(220v电源或学生电源),打点计时器,纸带,刻度尺(最好是塑料透明的),导线实验准备:1、仔细观察电磁打点计时器和电火花计时器,对照课本,比较它们的异同。2、两类打点计时器的打点时间间隔是多少?3、分析纸带时,如何计算纸带的平均速度。4、严格地说,瞬时速度我们引进测量出来的,你知道用什么方法求出的速度可以代替某点的瞬时速度吗?
实验目标:1、知道打点计时器的构造和原理,学会使用打点计时器,能根据打出的纸带计算打几个点所用的时间,会计算纸带的平均速度,能根据纸带粗略测量纸带的瞬时速度,认识v-t图象,并能根据v-t图象判断物体的运动情况。2、通过速度测量过程的体验,领悟两个方法:一是用图象处理物理数据的方法;二是极限法或说无限趋近法,加强一个认识,实验是检验理论的标准。实验器材:电源(220v电源或学生电源),打点计时器,纸带,刻度尺(最好是塑料透明的),导线实验准备:1、仔细观察电磁打点计时器和电火花计时器,对照课本,比较它们的异同。2、两类打点计时器的打点时间间隔是多少?3、分析纸带时,如何计算纸带的平均速度。4、严格地说,瞬时速度我们引进测量出来的,你知道用什么方法求出的速度可以代替某点的瞬时速度吗?5、从器材上读取的数据是原始数据,原始数据是宝贵的实验资料,要严肃对待,要整齐的记录,妥善保存。
解:(1)根据题意,可得y=100025x,化简得y=40x;(2)根据题设可知自变量x的取值范围为0<x<85.方法总结:反比例函数的自变量取值范围是全体非零实数,但在解决实际问题的过程中,自变量的取值范围要根据实际情况来确定.解题过程中应该注意对题意的正确理解.三、板书设计反比例函数概念:一般地,如果两个变量x,y之间 的对应关系可以表示成y=kx(k 为常数,k≠0)的形式,那么称y 是x的反比例函数,反比例函数 的自变量x不能为0确定表达式:待定系数法建立反比例函数的模型结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,从感性认识到理性认识的转化过程,发展学生的思维.利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,让学生感受数学有用,从而培养学生学习数学的兴趣.
方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:根据实际问题列代数式用代数式表示下列各式:(1)王明同学买2本练习册花了n元,那么买m本练习册要花多少元?(2)正方体的棱长为a,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n元,得出买1本练习册花n2元,再根据买了m本练习册,即可列出算式.(2)根据正方体的棱长为a和表面积公式、体积公式列出式子.解:(1)∵买2本练习册花了n元,∴买1本练习册花n2元,∴买m本练习册要花12mn元;(2)∵正方体的棱长为a,∴它的表面积是6a2;它的体积是a3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.
一、情境导入游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片《孩子,请不要私自下水》,并于观看后在本校的2000名学生中作了抽样调查.你能根据下面两个不完整的统计图回答以下问题吗?(1)这次抽样调查中,共调查了多少名学生?(2)补全两个统计图;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?二、合作探究探究点一:频数直方图的制作小红家开了一个报亭,为了使每天进的某种报纸适量,小红对这种报纸40天的销售情况作了调查,这40天卖出这种报纸的份数如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131将上述数据分组,并绘制相应的频数直方图.解析:先找出这组数据的最大值和最小值,再以10为组距把数据分组,然后制作频数直方图.解:通过观察这组数据的最大值为188,最小值为131,它们的差是57,所以取组距为10,分6组,整理可得下面的频数分布表:
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
将有理数-2,+1,0,-212,314在数轴上表示出来,并用“<”号连接各数.解析:利用数轴上的点来表示相应的数,再利用它们对应点的位置来判断各数的大小.解:如图:由数轴可知-212<-2<0<+1<314.方法总结:一般地,数轴上多个数的大小比较,可利用“数轴上两个点表示的数,右边的总比左边的大”这一性质进行比较.探究点四:点在数轴上的移动问题点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2 B.-6C.2或-6 D.以上答案都不对解析:∵点A为数轴上表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为2.故选C.方法总结:点A在数轴上移动要注意分两种情况:一个向左,一个向右,不要漏掉其中的一种情况.
解析:本题是要求两个未知数,即3和4的权.所以应把平均数与方程组综合起来,利用平均数的定义来列方程,组成方程组求解.解:设投进3个球的有x人,投进4个球的有y人,由题意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投进3个球的有9人,投进4个球的有3人.方法总结:利用平均数的公式解题时,要弄清数据及相应的权,避免出错.三、板书设计平均数算术平均数:x=1n(x1+x2+…+xn)加权平均数:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通过探索算术平均数和加权平均数的联系与区别,培养学生的思维能力;通过有关平均数问题的解决,提升学生的数学应用能力.通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进学生对数学的理解和增加学好数学的信心.
探究点三:函数的图象洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()解析:∵洗衣机工作前洗衣机内无水,∴A,B两选项不正确,淘汰;又∵洗衣机最后排完水,∴D选项不正确,淘汰,所以选项C正确,故选C.方法总结:本题考查了对函数图象的理解能力,看函数图象要理解两个变量的变化情况.三、板书设计函数定义:自变量、因变量、常量函数的关系式三种表示方法函数值函数的图象在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣,并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动.在活动中归纳、概括出函数的概念,并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解.
解:有理数:3.14,-53,0.58··,-0.125,0.35,227;无理数:-5π,5.3131131113…(相邻两个3之间1的个数逐次加1).方法总结:有理数与无理数的主要区别.(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.探究点二:借助计算器用“夹逼法”求无理数的近似值正数x满足x2=17,则x精确到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正数x各位上的数字的方法:(1)估计x的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x的百分位、千分位、…上的数,从而确定x的值.