我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
开学第二周国旗讲话发言稿 老师们,同学们:大家好!今天我国旗下演讲的题目是《演好自己的角色》。每段时期自己都有属于自己的角色,天真无邪的童年,懵懵懂懂的少年,轻狂迷茫的青年。可能很多时候你会怀念自己以前的角色,或者想象自己未来的角色,但最重要的是演好你自己现在的角色。因为你只有在自己的角色里才真正有发言权。信念要先行行胜于言,但是在行动之前给自己树立好的心态更能起到事半功倍的效果。调整自己,这是不论干什么都要一直进行的一个过程。给自己正确积极的定位,要考虑到外界因素,但也不要被外界环境压倒。学会选择,学会放弃,学会承认自己的弱点,接下来我们就可以在更坚实更广阔的道路上奔跑。“我们不能左右天气,但可以改变心情;我们不能选择容貌,但可以展示笑容;我们不能预知明天,但可以把握今天。”
活动目标:1.通过故事“水娃娃漫游记”初步了解水娃娃的三态变化。2.鼓励幼儿想像水娃娃的漫游过程,并以小组合作形式完成水娃娃漫游图。 活动准备:1.课件《水娃娃漫游记》2.蜡笔、纸。
[活动目标]1、通过探索和操作,感知胶囊翻跟头的科学原理,从而喜爱科学活动。2、会使用简单材料进行实验,并根据操作记录结果。3、了解胶囊会翻跟头是重心转移的原理。 [活动准备]1、幼儿实验用具每人一套:胶囊、铁球、一次性碗、其他实验材料(黄豆、小树枝、米粒、石头、碎布条)。2、记录实验结果用的表格、笔。3、课件。
【活动目标】1、激发幼儿热爱大自然的情感。2、培养幼儿尊重事实的科学态度,提高自主学习的能力。3、通过观察和实验,了解石头的多样性(出处、特性),丰富地理知识。【活动准备】1、教学课件2、实验材料、用书同幼儿人数。【活动重难点】1、幼儿能说出三种石头不一样的现象。2、教师对三种石头产生不同现象后的反复引导。【活动过程】(一)开始部分 幼儿介绍自己带来的石头。(幼儿互相介绍手中的石头,鼓励幼儿自由与同伴交流,说出自己的发现)(二)基本部分1、欣赏石头风景图 大千世界,有各种各样的石头,下面就让我们一起走进美丽的石头风景中吧!2、提问、猜想、记录 (1)提问:在大自然中,石头成为美丽的风景,石头又分为哪几种,每种石头又叫什么? (幼儿讨论)并且介绍石头的正确名称观看课件,了解石头名称。 (2)猜想:①你觉得三种石头能够漂浮在水面的是哪一种?②你觉得三种石头能写字的是哪一种?③你觉得三种石头摸上去最光华的哪一种? (3)纪录: 幼儿把猜想记录在《幼儿用书》的猜想表格中。3、幼儿动手实验,感知石头的特性, (1)把石灰石、鹅卵石和火山石放在手中,感受那个摸起来最光滑。 (2)用石灰石、鹅卵石和火山石在黑卡纸画画,哪个可以画出来。 (3)把石灰石、鹅卵石和火山石放进水中,会发现哪个能浮起来。 (4)把自己发现记录在《幼儿用书》的发现表格中(教师帮助幼儿认读书中相应的正确答案)。
2、教育幼儿要保护好自己的鼻子。 3、培养幼儿积极运用感官的习惯。 活动准备 不透明的容器,分别装有香水、大蒜、麻油、醋、酒、橘子等,最好每组一套。 活动过程 1、出示大象的木偶。小朋友你们说大象的鼻子有什么用处? (大象的鼻子能卷东西) 出示狗的木偶。小朋友,狗的鼻子又有什么用处? (狗的鼻子最灵)。 2、讨论人的鼻子有什么用处。 ⑴、动物的鼻子有这么大用处,那么我们人的鼻子有什么用呢?(呼吸、嗅气味) ⑵、桌上有许多小瓶子,用我们的小鼻子来闻闻,看瓶子里装的是什么。 ⑶、说说你最喜欢什么气味,不喜欢什么气味,为什么?你以前还闻过哪些有气味的东西?
准备:1.有秒针的大钟。 2.有爷爷的图片,开心与不开心的图片各一幅。 3.《幸福拍手歌》一盘。 4.各种不快乐的小动物的图片人手一张。 过程:一.爷爷不开心,出示第一张图片。 1.“请小朋友看看,这张图片上有谁?他怎么了?” 幼:爷爷很不开心很难过 2.“你是从哪里看出来的?” 幼:爷爷的眉头皱在一起,爷爷的嘴巴不笑!
1、激发幼儿探索的兴趣,在感知蜡烛燃烧现象的过程中体验探索的乐趣。2、培养幼儿的观察力和动手操作的能力。3、知道蜡烛燃烧时会发光、发热、燃烧时需要空气中的氧气。 【活动准备】 蜡烛若干个,主蜡烛6个,大、小杯子各32个、盘子若干个、瓶子若干各个、打火机、火柴、彩色颜料。 【活动过程】1、将教室内的灯关掉,告诉小朋友停电了,教室里这么黑,我们应该用什么方法来照明?(手电筒、火柴、打火机、蜡烛)2、今天我这正好有蜡烛,我们可以用什么把蜡烛点燃?(火柴、打火机)我用打火机把蜡烛点着。点蜡烛的时候注意将蜡烛稍微倾斜一下,小心烫到手,然后把蜡烛放到桌子上。现在,小朋友的桌子上也有一些小蜡烛,我把点燃的大蜡烛放在你们的桌子上,请小朋友把自己的小蜡烛点燃。我们的教室亮起来了,刚才教室还黑黑的,为什么蜡烛点燃以后教室亮起来了呢?(因为燃烧的蜡烛会发光) (1)呀!来电了。现在我们不需要蜡烛了,那我们用什么方法将这些蜡烛熄灭呢?(用嘴巴可以把蜡烛吹灭、用扇子扇也可以将蜡烛扇灭、把蜡烛拿到外面让风一吹也会熄灭、把蜡烛放在水里就熄灭了、用沙子、用土) (2)我这有一个玻璃瓶,我想用这个玻璃瓶能将蜡烛熄灭,你们说我能做到吗?我该怎么做?请小朋友帮我想个办法。
活动过程:一、调动已有经验,回忆相关知识。1、前段时间我们小朋友和老师一起做了有关时钟的调查,知道时钟有好多好多种。现在请你看看老师从网上下载的钟,看看你认识它吗?2、依次出示幻灯片,幼儿讲名称。3、刚才我们所见到的只是时钟家族的一部分,它可能还有其他的种类,我们以后再来探讨。4、上次我们已经认识过钟面,来告诉大家,最长的针叫(秒针),有点长的针叫(分针),最短的针叫时针。钟面上一共有多少个数字(12),最上面的是数字12,然后依次是1、2……11。请你好好回忆一下,时钟里的指针是朝哪一个方向走的?(1……12)对了,这样的方向就叫顺时针方向。
教学准备:1、各种形状不同的纸盒,积木;球、折纸、纸板。2、铁哑铃二对,大矿泉水二瓶(圆形),大木箱一只。3、粗细绳子若干,棒或木棍若干。4、滑轮二付。5、录像。教学过程:(一)激发幼儿积极参与的兴趣1、介绍物品。师:桌子上摆着许多东西,不认识的东西大家一起来告诉你。(重点介绍:滑轮)2、布置任务。师:这些都是物体,现在这些物体有没有动。(没有)。今天老师就请你来想办法,使这些物体移动位置,看谁想的办法最多。但有个要求,玩时不要拥挤,要相互谦让,并要把玩的方法记住,待会儿告诉大家。(二)幼儿动手操作,探索不同的力与物体运动的关系。1、幼儿操作,教师个别指导,注意发现与众不同的方法。2、提问:(幼儿表达,也可上来边操作边讲)(1)你是用什么方法移动这些物体的?(幼儿回答)小结:刚才有的小朋友用自己的手推、拉、拍、有的用嘴吹,还有的小朋友用脚踢使物体移动,这说明要使物体移动必须要用力。(2)样一件物体(出示皮球),你们用力大和用力小的时候,物体移动的一样吗?(幼边操作边表达)小结:对同样一件物体,用力大物体动的又快又远,用力小,物体动的慢,滚的也不远。
1:提供不同材料,建议幼儿思考如何使沉入水中的材料浮于水面,或使浮于水面的材料沉入水中。如用牙膏皮做成小船,或将小铁钉放在积木上等。沉与浮 2(立起来的木棍):将小木棍放入水中,发现它躺在水面上。如果在木棍一端粘一大块橡皮泥,或钉上一根大铁钉,都能使它立起来。 活动目标:使用多种材料,玩水的过程充满和有趣。 活动材料:饮料管、纸、牙膏皮、泡沫塑料、小积木、塑料、菜叶、小瓷器、竹片、铁钉、小石子水管、竹片、盛水具、彩色墨水等 活动过程:下午天气热,小朋友都在玩水。今天材料很丰富,但给出一个条件,每人只给一盆水,要节约用水,用完就没有了。用水管连接水的有3组、用大小杯子滔水的有2组、用矿泉水瓶盖扎洞来射水有3组、做水帘洞1组、沉浮和自定义玩法有几组。 “水流到别的杯子去”组;佘馨蕊、张俊骞、覃芷珊、卢艺文、班学佳 *这几个小朋友,把2根管子把3个杯子连接起来,慢慢地将一杯红色的水倒在水杯里玩,发现杯里的红水通过连接饮料管子流到另一个水杯,3杯水慢慢变红了,孩子们高兴极了,饮料管子传送水耶,3杯红水第一次出现流动成水平,水不流动了。
【活动目标】1、发现物体在空中会自由下落,不同物体下落速度不同。2、了解“自由落体”的科学现象。3、加强幼儿探索科学现象的兴趣。【活动难重点】1、重点:了解“自由落体”的科学现象2、难点:不同物体下落的速度不同。【活动准备】1、可操作材料:羽毛、石子、绳子、铁制品、纸、小玩具、沙包、小纸盒等物品。2、记录卡。【活动过程】1、开始部分: 谈话:小朋友们都问我一个问题:飞机为什么会落下来?今天老师就和小朋友们来研究一下这是为什么?2、基础部分:1)、游戏:“看谁扔的高”。为幼儿提供材料“猜一猜,试一试看看什么东西能扔的高?”幼儿操作。 (引出幼儿对物体下落现象的经验回忆,直到不管什么东西都会落到地上。)2)讨论:什么物体先落下来?比较物体下落的速度。a、你刚才扔了什么?它落下来的速度怎样?b、再试一次,比较一下什么东西落地最快?c、将自己的发现记录下来,和幼儿一起统计物体下落的情况。3)、幼儿第二次探索,然后讨论:物体下落的速度与什么有关呢?a、出示两个不同的物体(羽毛、石子),并把两个物体放在同一高度,让物体自由落下。 提问:你观察到了什么? 幼儿讨论,教师小结:物体的形状会改变下落的速度
[活动重难点] 幼儿能根据自己的生活经验探索包装鸡蛋的方法。 能使自己包装的鸡蛋具有防震和固定的作用。 [活动准备] (1)与幼儿共同收集的材料:纸盒、塑料盒、泡沫塑料、米菠萝、棉花、报纸、硬纸板。 (2)熟鸡蛋、皮筋、透明胶带、曲别针、剪刀、毛线、粘钉、橡皮。 [活动过程]
[活动目标]1、通过剪、折、粘训练幼儿的手眼协调能力和思维敏捷力。 2、让幼儿自主探索使纸站立的方法,激发其对纸探索的欲望。 3、培养同伴间的合作能力。[活动准备] 幻灯片、剪刀每人一把、双面胶每组两卷、纸篓五个、展台一个、城堡模型一个、手工纸若干张[活动过程]一、故事导入(幻灯片出示) 1、师:来,老师给小朋友们讲一个故事。 小纸片生来扁扁的,非常孤独它好想像小鸡一样站起来,来看看外面的世界有多美! 2、故事后提问:小朋友小纸片想干什么呀!(站起来) (评析:利用幻灯片中的形象画面,激发幼儿的兴趣和探索欲)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。