一 活动目的:1. 进一步发扬中华民族的传统美德,倡导健康、向上的生活习惯,营造良好的育人环境和校园文化氛围,培养适应新时代要求的小学生,使同学们真正做到“讲文明、讲卫生、守纪律、懂礼貌”,并时时展现当代小学生良好的精神风貌。2. “从小事做起,以德律己”,培养学生优秀形象与品质,向不文明的行为告别,向不健康的思想告别,对学生进行行为习惯养成教育。二.活动准备:1. 收集健康有益的故事、图片,说说哪些礼貌用语。2. 排练《好孩子》、儿歌、歌曲等。3. 自制写有礼貌用语的绿树叶。三.活动时间:3月13日下午第二节。四.活动场地:本班教室五.活动过程:(一)活动导入师:孩子是祖国的明天、祖国的未来。祖国的明天需要我们去描绘,需要我们去创造。我们要做合格的创造性人才。就需要我们从小养成良好的行为习惯。1.请听故事《小猪上学》,听后回答:小猪为什么不明白大家都不和他做朋友呢?2.是呀,傻傻的小猪不讲文明、不懂礼貌,我们不能这样。那么,有哪些文明用语、该怎样使用呢,大家拿出纸条,小组交流。
教学过程:一、导入。二、作品介绍。《英雄凯旋歌》选自亨德尔的清唱剧《犹大·麦卡白》,表现了英雄得胜归来时雄壮威武、万众颂扬、酣畅热闹的场面。三、作者介绍。亨德尔(1685-1759),德国作曲家,在欧洲音乐史上与巴赫占有同等重要的地位。他的作品具有英雄性、史诗性的风格特点。代表作有清唱剧《弥赛亚》、管弦乐组曲《水上音乐》等。四、清唱剧简介。清唱剧是一种介于歌剧和大合唱之间的多乐章大型声乐套曲,包括独唱、重唱及合唱,由管弦乐队伴奏。五、《英雄凯旋歌》歌曲学习。六、拓展练习。亨德尔的清唱剧《弥赛亚》中的唱段《哈利路亚》非常著名。1743年,亨德尔的《弥赛亚》在伦敦演出。当唱到《哈利路亚》时,英国国王为歌曲的激昂情绪所感染,激动得突然起立,全场观众也随之起立。从此,在欧洲的许多地方都保留着听众起立听《哈利路亚》的传统。“哈利路亚”一词的含义是指“赞美上帝”。请你跟着音乐唱一唱吧。七、总结下课。
教学目标:一、“情感态度与价值观”目标。1、通过自主学唱歌曲《英雄凯旋歌》,产生对柯达伊音乐教学法的兴趣并乐于参与到音乐实践中。2、通过二声部合唱,产生对和声的美继续追求的愿望。二、“过程与方法”目标。“构唱→听音→实践→总结”自主学唱歌曲。三、“知识与技能”目标。1、初步形成首调唱名法中7个音的音高概念。2、能够音准准确的构唱《英雄凯旋歌》中的音程。3、音准准确有感情的演唱歌曲《英雄凯旋歌》。4、能够视唱简单的二声部。教学难点:1、构唱《英雄凯旋歌》中的音程。2、大小二度变化音的演唱。3、一字多音的演唱。4、二声部的合唱实践。
教学过程:(一)创设情境。课间反复播放《英雄凯旋歌》音乐。【设计意图】让学生在无意间融入对音乐旋律的初步记忆。(二)新课讲解。1、复习C大调音阶。(3分钟)(1)教师用钢琴弹一遍,上下行。学生听,在心中默唱。(教师提示学生注意钢琴的音色及音准。)(2)学生模仿钢琴的音色、音准跟琴轻声唱。(3)学生模仿钢琴的音色、音准无琴轻声唱。(4)运用柯达伊手势辅助唱音阶,通过手势的提醒,进一步提高音准。【设计意图】巩固音阶,唱准每一个音。2、学唱歌曲旋律。(20分钟)(1)根据老师所给手势唱音名。(2)给第一个音,挥拍视唱《英雄凯旋歌》旋律。(3)解决视唱过程中遇到的难点。(例如:变化音、节奏、宽音程等)。(4)给第一个音,挥拍完整、流畅的再次视唱《英雄凯旋歌》旋律。(5)学生自己加歌词演唱歌曲。发现一字多音的演唱难点,教师进行引导解决,并提示演唱时的声音位置、咬字、情感表达。【设计意图】通过柯达伊手势练习构唱音高、完成歌曲旋律视唱,达到音准准确有感情的演唱歌曲的目的。(三)拓展实践。1、听音练习,简谱填写学案中的二声部唱名。(5分钟)(1)第一遍听。(2)第二遍检查。(3)请一位学生唱出自己所听答案,教师在演唱过程中,用手势公布正确答案,其他同学较对这位同学正确与否,并对自己的答案进行纠正。
说教材。《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。会用“鸽巢原理”解决简单的实际问题。通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
(一)教材的地位和作用《海陆分布》主要介绍世界的海洋与陆地的概况,是学生在学习了《认识地球》等章节的基础上,初步认识世界海陆的分布,是对前面所学习内容的拓展和延伸;同时学好本节有助于学生学习八年级上册的气候、居民及下册的世界分区地理。所以这一节的内容显得十分重要。
没有比脚更长的路,没有比人更高的山。应对世界动荡的方法就是,用具体的方式,爱具体的人和事。同学们,愿你们充满笃定和认真的激情,对自己的事情全身心地投入,很多时候,这也许比理性、冷静的分析,更加弥足珍贵。作为校长,我也经常问自己:“给刚刚毕业的大学生什么建议?”《新时代的中国青年》白皮书这样告诉大家,“把基层作为最好的课堂,把实践作为最好的老师,在磨砺中长才干、壮筋骨。”最初的几年,大多数同学为了谋生,不得不暂时做一些枯燥、乏味、自己不感兴趣的事情,这也可能会陷入情绪负面循环的怪圈。这时候,请大家鼓足勇气,用行动打破它!那么,什么是“行动力”?
我是华南指挥部__项目部的资料员兼出纳,我叫__,想必大家对我既熟悉又陌生,熟悉的是名字,陌生的是人。我是一个进公司刚满一年的员工,在过去的一年里深得领导的信任和厚爱,有幸被评为优秀员工,并在年终作为资料代表在此发言,向领导们进行工作总结汇报。自进入谦诚后任职的第一个项目是江西向莆铁路,于20**年2月9日到向莆项目任职,在向莆工地开始接触软基处理的资料整理和小票打印,在项目部边做边学至5月份完工。又于6月份调任南广铁路__项目部任职,自在公司从事资料员兼出纳工作以来,我便对资料有了一种全新的认识,我认为,我们的资料员工作是非常重要的工程环节之一,是一个与现场施工同步的`重要环节,而且也是个需要灵活、耐心、细致的工作。那么我们在实际工作中应该按照什么程序才能做到最好呢?我总结了几点:
每个孩子都具有强烈的好奇心,他们对一切事物都具有极强的兴趣。活动过程中我运用了教学课件、小图片、教师自身的讲述,把孩子们带入了故事的情境中,使孩子们在倾听老师的讲述、观看课件等的过程中,理解故事内容,知道声音太大的危害,学习控制自己的声音。活动的开展由易到难,层层深入,使孩子们能主动积极、自愿地参与和学习,获得经验,体验了孩子的主体地位,也正好契合了《纲要》中关于“教师应成为幼儿学习活动的支持者、合作者、引导者”的理念。此外我还采用了视听结合法、谈话交流法、引导孩子在活动中敢说、敢想,树立了孩子的自信心,从而使本次活动更好地完成教学,形成快乐学习的和谐统一。整个活动我以幼儿为主体,变过去的“要我学”为现在的“我要学”,遵循由浅入深的教学原则,幼儿在看看、听听、想想、说说的轻松气氛中掌握了活动的重点、难点。在活动中教师充分调动幼儿运用讲述法、讨论法、谈话法等学习方法,让孩子学得轻松,感兴趣。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。