解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力
【类型三】 已知三边作三角形已知三条线段a、b、c,用尺规作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作线段BC=a;2.以点C为圆心,以b为半径画弧,再以B为圆心,以c为半径画弧,两弧相交于点A;3.连接AC和AB,则△ABC即为所求作的三角形,如图所示.方法总结:已知三角形三边的长,根据全等三角形的判定“SSS”,知三角形的形状和大小也就确定了.作三角形相当于确定三角形三个顶点的位置.因此可先确定三角形的一条边(即两个顶点),再分别以这条边的两个端点为圆心,以已知线段长为半径画弧,两弧的交点即为另一个顶点.三、板书设计1.已知两边及其夹角作三角形2.已知两角及其夹边作三角形3.已知三边作三角形本节课学习了有关三角形的作图,主要包括两种基本作图:作一条线段等于已知线段,作一个角等于已知角.作图时,鼓励学生一边作图,一边用几何语言叙述作法,培养学生的动手能力、语言表达能力
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
小学生学习的主动性,大多取决于兴趣,他们充满好奇,对显而易见的实物和直观信息敏感性强、接受快。借助多媒体计算机CAI辅助教学,把所学内容更加直观地表现出来。4.游戏式复习热身,体现课堂教学开放性利用做游戏的形式进行旧知识的复习,既消除了上课初老师和学生之间的陌生感,又激发了学生学习兴趣,同时又对前面所学内容进行了巩固。5.综合运用“愉快教学”、“情境教学”、“合作学习”等多种教学方法,降低学习难度,活跃课堂气氛。6.展开活动式教学,设计各种形式为教学服务的活动,让学生在学中乐,在乐中学,不断强化知识的巩固记忆。7.设置评比台,及时评价小组及个人表现,鼓励学生积极参与学习活动。四、说教学流程1.拍手游戏热身2.师生问好,交流,对第一页内容复习3.引入第二页内容,学习新单词、句型4.趣味操练
老师们,同学们:大家早上好!我今天国旗下讲话的题目是:端午节之屈原战国时代,楚秦争夺霸权,诗人屈原很受楚王器重,然而屈原的主张遭到上官大夫靳尚为首的守旧派的反对,不断在楚怀王的面前诋毁屈原,楚怀王渐渐疏远了屈原,有着远大抱负的屈原倍感痛心,他怀着难以抑制的忧郁悲愤,写出了《离骚》、《天问》等不朽诗篇。公无前229年,秦国攻占了楚国八座城池,接着又派使臣请楚怀王去秦国议和。屈原看破了秦王的阴谋,冒死进宫陈述利害,楚怀王不但不听,反而将屈原逐出郢都。楚怀王如期赴会,一到秦国就被囚禁起来,楚怀王悔恨交加,忧郁成疾,三年后客死于秦国。楚顷衰王即位不久,秦王又派兵攻打楚国,顷衰王仓惶撤离京城,秦兵攻占郢城。屈原在流放途中,接连听到楚怀王客死和郢城攻破的噩耗后,万念俱灰,仰天长叹一声,投入了滚滚激流的汩罗江。
一、说教材:(一)说课文内容:这篇课文选自《三国演义》,课文主要写了周瑜妒忌诸葛亮的才干,用十天造十万枝箭的任务来为难他,诸葛亮同周瑜斗智,用草船借箭的方法向曹操借到十万多枝箭,最后令周瑜不得不自叹不如。文中人物形象性格鲜明,宜引导学生品读,体会人物性格,同时,课文的思考练习主要设计了引导学生提出有价值的问题这样的练习。(二)说教学目标:1.初读课文,引导学生大胆提出感兴趣的问题,并互相解决。(这是能力的培养)2.理解课文内容,品读课文,总结出诸葛亮草船借箭成功的原因。(这是过程与方法的培养。)3.从故事中具体的人和事中得到启示,激发学生的求知欲和创新意识,以及教育学生要有广阔的胸襟。(这是情感态度与价值观的培养。)
一、说教材《草船借箭》是部编人教版小学语文五年级下册第二单元的一篇精读课文。这篇课文是根据我国著名古典历史小说《三国演义》中有关“草船借箭”的情节改写的,作者是明朝的罗贯中。草船借箭的故事发生在东汉末年,曹操、刘备、孙权各据一方。当时曹操刚刚打败刘备,又派兵进攻孙权,于是刘备和孙权联合起来抵抗曹操。刘备派诸葛亮到孙权那里帮助作战,著名的赤壁之战就是在孙、刘联合抗曹的时候发生的,而“草船借箭”就是“赤壁之战”中的一个小故事。《草船借箭》这篇课文讲述了周瑜妒忌诸葛亮的才干,要诸葛亮十天内造出十万支箭,以此来陷害他。诸葛亮为顾全大局,与周瑜斗智,用妙计向曹操“借”箭,挫败了周瑜暗算,说明诸葛亮有胆有识、谋划周密、才智过人。课文结构严谨,故事以“借”为主线,按事情发展顺序进行叙述。
二是提速高技能人才培养。推进**艺才高级技工学校打造我区首个技师学院,推动建立*个新职业培训示范基地、*个技能大师工作室、*个“巴渝工匠”乡村驿站,新增*家以上企业自主评价机构,提升技能人才培养层次。力争到2024年底,全区技能人才总量达到**万人,高技能人才总量达到**万人。三是优化人才招聘选拔机制。有序实施全区部门下属事业单位年度招聘工作,开展教育、卫生事业单位赴高校招聘应届优秀大学毕业生,规范开展基层医疗卫生机构考核招聘,进一步做好评比达标表彰工作和创建示范活动,充分发挥表彰激励作用。四是健全联系服务专家制度。坚持把搭建事业平台、发挥专家作用作为联系服务的重点,为专家创新创业提供良好条件,组织开展区内专家休假、疗养、学术交流“三位一体”活动,探索“学养结合”服务模式,打造各领域高层次人才交流互动平台。
所以今天,从疫情说起。大学四年,疫情三年,很多学弟学妹感到委屈、抑郁。青春一去不复返,谁来还给我?我想说,基本上没人会还给我们青春,也没人能还,还得自己找,而且就是在当下的每一天里找。 不瞒大家说,今年有几天,我也有抑郁情绪,过度焦虑,对自己的未来失去信心,对什么事都提不起兴趣,工作效率明显降低。有一天,我忽然拍自己大腿,就像大学时上课打瞌睡,使劲掐自己一把,醒过来,开始反问自己:当大家都在居家办公时,有人工作业绩不减反增?有人可以抓住时间开启一项新研究?有人能锻炼出身体马甲线?有人能静心读书提升自己?有人增进了亲子感情?而我,为什么不能?
《中学生守则》可以说是我们的良师益友,是我们迈向人生路的一位优秀的导航,教会我们迈好青春的第一步!阅读《中学生守则》后,我认为作为一名中学生,首先应该有一颗爱国心。热爱祖国,自觉维护伟大祖国的尊严,在心中时时刻刻铭记——我只一名中国人!我为自己是一名中国人而感到骄傲,我们的祖国母亲有着悠久的历史,在古代为四大文明古国之一,对人类文明进步起了巨大的推进作用。中国人民一向都是善良、勤劳、勇敢的,祖国母亲在近代饱受列强的欺凌和践踏,但今时不同往日,现在的中国就像一头崛起的雄狮,我们这一代人要通过自己的努力,刻苦学习科学文化知识,让这条东方巨龙屹立在世界之上!
第一,要抢抓文旅发展难得机遇。要抢抓有序放开跨省旅游机遇,今年*月底,国家文化和旅游部制定印发了《关于加强疫情防控科学精准实施跨省旅游“熔断”机制的通知》,将跨省团队旅游“熔断”区域进一步精准到县(区)域,我们要抓住机遇,全力恢复旅行社及在线旅游企业的跨省团队旅游及“机票+酒店”业务,促进旅游市场快速复苏回暖。要抢抓成功举办旅发大会扩大影响机遇,突出抓好*条旅游精品线路、节庆活动、旅游产品等培育。上半年,我们推出了“*人游*”活动,全州*家景区免门票一个月,效果很好,还要继续开展。要抢抓暑期学生旅游高峰期和全省干部职工*月份集中休年假机遇,学习借鉴其他地区的经验做法,研究具体“引客入州”政策措施,点燃*旅游市场。 第二,要及时兑现旅游纾困政策。上半年,国省州针对文旅行业恢复发展出台了系列政策措施,今年州里已安排旅游纾困专项资金,各相关部门要认真梳理,兑现落实国家、省州出台的系列帮扶政策。要加强上级专项资金申报,力争获得更多国省政策支持。要盘点评估现有政策落实情况,进一步摸排受疫情影响较大的餐饮、住宿、交通运输、文化旅游等服务业企业名单,专项制定帮扶措施,帮助困难企业渡过难关。要强化部门联动,结合干部联企“送政策、解难题、优服务”和“银行行长进园区”活动,提高政策直达性、扩大受益面,确保惠企政策精准直达快享,助推文旅产业加快复苏发展。 第三,要精准组织开展市场营销。作为首届湖南旅游发展大会的系列活动,近期,*驻华外交官“发现中国之旅”走进*州,*的美景和文化给他们留下了非常深刻印象,来自朝鲜、泰国等*个国家的*位驻华外交官及代表对*文旅纷纷点赞,希望以后有机会还能再来。要抢抓全省旅发大会宣传热度,开展好神秘*“盲盒”快闪,旅游线路评选等州旅发大会会后活动和“周游三湘 就来*”推广活动。要组织客源市场营销“小分队”,在长沙、广州等重点客源城市开展精准营销,与重庆、湖北、广东等地洽谈合作细节。鼓励各县市区围绕旅发大会、暑期旅游市场策划各类营销活动,办好湖南省夏季乡村旅游节、*旅拍节第节庆活动,营造浓厚宣传营销氛围。要树立全州“一盘棋”思想,强化整体形象包装,建立健全全州旅游宣传互推、智慧旅游、旅游通达、零客互推、利益共享等保障机制,改变过去各县市区文旅宣传互推“各自为政”力量分散的现状,加快构建旅游联动发展大格局。同时,要加大文化旅游资源整合,加快组建州级文化旅游投资集团公司,加大文旅龙头企业引进和培育力度,支持文旅企业参与市场竞争、不断做大做强。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。