创设情景 兴趣导入问题 观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?再经过12个小时后,显示的时间是多少呢?.解决每间隔12小时,当前时间2点重复出现.推广类似这样的周期现象还有哪些? 动脑思考 探索新知概念 对于函数,如果存在一个不为零的常数,当取定义域内的每一个值时,都有,并且等式成立,那么,函数叫做周期函数,常数叫做这个函数的一个周期. 由于正弦函数的定义域是实数集R,对,恒有,并且,因此正弦函数是周期函数,并且 ,, ,及,,都是它的周期.通常把周期中最小的正数叫做最小正周期,简称周期,仍用表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是.
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?
(一) 单元质量检测内容一、 单项选择题1.小林爸爸承包了村里的一个鱼塘, 需要签订一份承包协议。他爸爸准备去律师 事务所花钱让律师拟订一份承包协议, 他妈妈却说花钱浪费, 自己随便写写就 可以了。这说明( )A.小林妈妈勤俭节约B.小林爸爸小题大做,实属多此一举C.小林爸爸法治观念强,懂得用法律保护自己D.小林父母性格不和,观点有分歧2. 《民法典》规定: 父母对未成年子女负有抚养、教育和保护的义务。《义务教 育法》规定: 社会组织和个人应当为适龄儿童、少年接受义务教育创造良好的 环境。《环境保护法》规定:禁止引进不符合我国环境保护规定要求的技术和 设备。这说明( )A.未成年人的教育问题很重要B.环境保护要求很严格C.生活方方面面都需要法律D.国家重视民生
(四) 作业分析与设计意图作业的素材选择多元化,有漫画、图表等。设问指向明确,注重内容的基础性,应 用性。通过作业设计与实施,可以引导学生关注法律和社会,认识到推进依法治国,建设 社会主义法治国家的意义,增强自己的法律意识和提高依法办事的能力。作业2( 一) 作业内容绘制《与法同行,做守法小公民》手抄报一、活动背景学习了《我们与法律同行》的内容后,同学们充满了力量,更加坚定了建设 社会主义现代化国家的信心。某中学七年级 (1) 班班委会拟组织一次《与法同 行,做守法小公民》手抄报比赛,邀请你参加并绘制一份手抄报。二、活动步骤1.班委会明确活动主题,并对板面设计和内容提出具体要求。 2.学生收集资料,设计版面,组织内容,绘制手抄报。 3.全班交流分享。4.班委会组织评奖,将优秀作品张贴在班级宣传栏展示。
本单元所要落实的核心素养是“法治观念”,旨在树立尊法守法学法用法意 识。了解和识别可能危害自身安全的行为,具备自我保护意识,掌握基本的自我 保护方法,预防和远离伤害。本单元所依据的课程标准内容是“初步认识法律的概念及特征,感受法律对 个人生活和社会秩序的重要性,养成自觉守法、遇事找法、解决问题靠法的思维 习惯和行为方式。 ”(二) 教材分析1. 单元立意:本单元从学校生活领域过渡到社会生活领域,着力体现学生生命成长的连续 性与教育内容的衔接,注重的是理论联系实践能力的培养。法治是治国理政的基 本方式,依法治国是社会主义民主政治的基本要求。加强法治教育,是对未成年 人进行社会主义核心价值观教育的重要内容之一,是全面推进依法治国,建设社 会主义法治国家的迫切要求。教材着力从学生的生活经验入手,带领学生学习法 律知识,了解法治的进程,了解法律的特征和作用,初步感受法律与生活密不可 分,理解法律对生活的保障作用。
2.内容内在逻辑本单元作为法律版块的起始单元,以我国建设社会主义法治国家为背景,带 领学生了解社会的法治进程,初步感受法律与生活密不可分,理解法律对生活的 保障作用,感受法律对青少年自身的关爱,引导学生自觉尊崇法律,激发学生学 习法律的责任感,学会依法办事,同时青少年们要积极适应法治时代的要求,树 立法律信仰,努力成为法治中国建设的参与者和推动者。这就需要青少年不断学 习、 内化法律知识,努力为法治中国建设做出自己的贡献。(三) 学情分析未成年人的生理、心理发展都不成熟,辨别是非的能力不强,法制观淡薄,容易受到不良因素的影响,甚至会走上违法犯罪的道路,未成年人违法犯罪 现象是我国面临的一个严峻的社会问题; 受不良社会风气的影响,以及中小学法 治教育需要进一步强化的现状影响,中小学生规则意识和法律意识淡薄。因此, 必须要增强 全民法治观推进法治社会建设,把法治教育纳入国民教育体系,从青 少年抓起,强化规则意识,倡导契约精神,弘扬公序良俗。
考点:对未成年人实施特殊保护的作用解析:A.B杜绝、不容许、说法太过绝对,排除。 D只看到互联网的消极作用,没 看到互联网的积极作用,排除。故该题应选C。2.答案:C考点:保护未成年人的专门法律解析:A. B说法与题意不符,排除。 D.就不会、太过绝对,排除。《未成年人保 护法》是保护未成年人的专门法律,给予未成年人特殊保护,故该题应选C。3. 答案:B考点:保护未成年人的两部专门法律名称。解析: A.C.D与题意不符,故该题应选B。4. 答案:A考点:学校保护。解析:对学生进行安全教育是学校保护对未成年人特殊保护的表现。 ①②③说法 正确。 ④消除、说法太过绝对,排除。故该题应选A。5. 答案:D考点:未成年人为什么需要特殊保护。解析:①②③④说法正确,故该题应选D。二、 非选择题⑴参考答案:社会保护点拨:从保护的表现和主体判断出是未成年人六道防线中的社会保护。
6.公平是人类历史上一个永恒的主题。现实生活中我们也常常会遇到是否公平、如何 做到公平的问题。下列对公平理解正确的是( )A.公平就是多享受权利,少履行义务 B.公平就是绝对公平C.公平是一种较好的机遇和命运 D.公平意味着处理事情要合情合理7.2021年全国“两会”期间,“两会”特别节目《公平正义新时代》以案说法的同时, 还特别着重展示各部门如何履行职责守护社会公平正义。之所以关注公平正义,是因 为 ( )①正义是社会和谐的基本条件,能够为社会发展注入不竭的动力②公平是个人生存和发展的重要保障,是社会稳定和进步的重要基础③正义是社会文明的尺度,体现了人们对美好社会的期待和追求④公平的社会能为所有人提供同等的权利,从而激发自身潜能,提高工作效率 A .①②③ B .②③④ C .①③④ D .①②④8.教育部通知: 2018年全面取消体育特长生、中学生学科奥林匹克竞赛、科技类竞赛、 省级优秀学生、思想政治品德有突出事迹等全国性高考加分项目,这一规定 ( )
作业设计是老师布置给学生学习任务的设计,是教学设计的有机组 成部分。它以学习目标为起点,以学习内容为依托,以学习评价为保障, 以发展学生素养为最高标准。作业设计的要素包括作业内容、时间要求、 设计意图、作业分析及作业评价。我们八年级道德与法治组将单元作业 设计为三部分,第一部分是课时作业,本部分通过设置习题和活动,达 道巩固知识立德树人的目标。第二部分是单元作业,主要是为了检测学 生是否达到了单元学习目标,这部分重点考查学生对基础知识的掌握情 况。第三部分是特色作业,增强家国情怀,提高主人翁意识,更加注重 学生的能力提升。进入八年级,知识内容不断加深,同学们在学习方面面临着更大的 挑战,一部分学生因此产生畏难情绪,感觉学习吃力,如果在作业设置 方面,设置的作业量过大或过难,容易让学生彻底失去学习的兴趣,从 而放弃学习。
第三阶段:分班交流论证,归纳整理成文在学生分组搜集整理资料的基础之上,我们又以班级为单位由核心组成员组织资料交流并展开讨论,共同归纳整理,集体完成《常熟建设现代农业科技园区可行性分析调查表》中的相关内容,交给各自的指导老师修改。第四阶段:分片走进园区,体验总结反思我们本着“熟悉家乡、就近考察”的原则把全年级的学生分成八组,分别到八个园区开展实地调查。组织他们听园区领导或专业人员介绍园区的建设情况和远景规划,深入田间地头和温室大棚参观园区生产装备和农民劳动场景,开展园区劳动体验,与园区农民交谈等系列活动。要求大家在体验劳动、收获快乐的同时,对照《常熟现代化农业园区建设和发展情况调查表》的内容逐一展开讨论并认真填写。在此基础上,我们又要求各片的同学认真反思每个园区在发展过程中还有哪些不够完美的地方和需要改进的建议。
5.课堂练习,夯实基础。得出原理方法论之后,给学生一分钟时间记忆,然后一名或几名学生上讲台默写,其他同学相互提问。针对这一基本概念,设置一道选择题。6、播放黄宏、宋丹丹小品《回家》片段,引发学生的兴趣,接着教师展示几幅关于手机的图片,然后让学生结合图片,进行讨论交流解决“合作探究二”,然后进行抢答(可以引发学生的竞争,从而调动课堂气氛)。教师在学生回答基础上,引导学生得出发展的实质这一结论,接着教师展示“如何判断一个事物是新事物还是旧事物的标准”,结合这一标准,让学生判断“电脑科技算命是不是新事物”,学生很容易就可以得出结论。7.教师简单总结刚刚学过的内容,引出“运动、变化是不是发展?”然后让学生讨论交流“合作探究三”。然后进行抢答,教师在学生回答基础上,稍加点评,给予积极地评价,然后展示答案。8.教师引导学生得出本节课的第二个原理与方法论,并让学生当堂记忆,可以简单提问。然后做课堂达标题,在学生展示答案后,教师简单点拨即可。
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
二、教研活动时间原则上每月一次。各教研组长应根据本组实际自行确定时间,召集本组全体成员参加,任何人不得无故请假或迟到早退。 三、教研组内开展教研活动,必须邀请学校一名中层以上干部参加活动,第次活动必须作好记录,并由参加活动的领导签字。各教研组长必须于每月底将教研记载情况交教导室检查评估,未经领导签字的记载一律无效。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。